Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 55-61    DOI: 10.11902/1005.4537.2022.040
Current Issue | Archive | Adv Search |
Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment
YANG Yifan, SUN Wenyao(), CHEN Minghui(), WANG Jinlong, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(8855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocrystalline coatings of superalloy N5 were deposited on the surface of nickel-based single-crystal superalloy N5 by magnetron sputtering. The oxidation behavior of the single-crystal alloy and its nanocrystalline coating in environments of O2 and O2+20%H2O at 900 ℃ was investigated, respectively. The results show that the water vapor accelerates the oxidation rate of the bare alloy and the coating, while promotes very specially the spallation, and affects the composition and structure of the oxide scales formed on the bare alloy. Correspondingly, the formed oxide scales composed of an outer layer NiO, a middle layer NiAl2O4 and an inner layer Al2O3 for the bare alloy being oxidized in environments of O2 and O2+H2O respectively, meanwhile, the oxidation rate is higher, and the spallation of outer oxide scale dose emerge for the oxidation in O2+H2O environment. The nanocrystalline coating significantly can enhance the high temperature oxidation resistance of the coated alloy. After oxidation in O2, Al2O3 is formed on the surface of the coating, while in O2+H2O environment, the formed oxide scale is NiAl2O4. Meanwhile, no cracks and spalling were found on the surface of oxide scale, which played a good protective role.

Key words:  Ni-based single-crystal superalloy      nanocrystalline coatings      high-temperature oxidation      water vapor      magnetron sputtering     
Received:  14 February 2022      32134.14.1005.4537.2022.040
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51871051);Ministry of Industry and Information Technology Project(MJ-2017-J-99)

Cite this article: 

YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 55-61.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.040     OR     https://www.jcscp.org/EN/Y2023/V43/I1/55

Fig.1  Surface morphologies (a, b) and elemental mappings (c, d) of the alloy after etching in diluted FeCl3 solution
Fig.2  Surface (a), fractured cross-section (b), polished cross-section (c) and TEM (d) images of the as-sputtered nanocrystalline coating, the inset in (d) shows selected electron diffraction rings (e)
Fig.3  Oxidation kinetics of N5 superalloy and as-sputtered nanocrystalline coating during oxidation at 900 ℃ for 100 h in O2 and O2+H2O
Fig.4  XRD patterns of N5 superalloy and as-sputtered nanocrystalline coating oxidized at 900 ℃ for 100 h in O2 and O2+H2O
Fig.5  Surface morphologies (a, b) and EDS analysis (c) of N5 superalloy after oxidation at 900 ℃ for 100 h in O2
Fig.6  Surface morphologies (a, b) and EDS analysis (c, d) of N5 superalloy after oxidation at 900 ℃ for 100 h in O2+H2O
Fig.7  Cross-sectional morphologies of N5 superalloy after oxidation at 900 ℃ for 100 h in O2 (a, b) and O2+H2O (c, d)
PointNiAlTa
113.34---21.33
216.7923.531.42
324.4914.750.83
451.307.000.40
526.6823.721.43
616.9615.661.78
745.020.520.56
Table 1  EDS analyses results of the points 1-7 marked in Fig.7 (atomic fraction / %)
Fig.8  Surface (a, b) and cross-sectional (c, d) morphologies of the as-sputtered nanocrystalline coating after oxidation at 900 ℃ for 100 h in O2 (a, c) and O2+H2O (b, d)
1 Wu Y, Narita T. Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor [J]. Surf. Coat. Technol., 2007, 202: 140
doi: 10.1016/j.surfcoat.2007.05.018
2 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
3 Wang X Y, Xin L, Wang F H, et al. Influence of sputtered nanocrystalline coating on oxidation and hot corrosion of a nickel-based superalloy M951 [J]. J. Mater. Sci. Technol., 2014, 30: 867
doi: 10.1016/j.jmst.2014.01.001
4 Qiu P P, Shu X Y, Hu L L, et al. Research progress of Pt-modified aluminide coating on Nickel-base superalloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 186
邱盼盼, 舒小勇, 胡林丽 等. Pt改性镍基高温合金铝化物涂层研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 186
5 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
doi: 10.1016/j.pmatsci.2007.11.001
6 Zhu D D, Wang X L, Zhao J, et al. Effect of water vapor on high-temperature oxidation of NiAl alloy [J]. Corros. Sci., 2020, 177: 108963
doi: 10.1016/j.corsci.2020.108963
7 Yan K, Guo H B, Gong S K. High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres [J]. Corros. Sci., 2013, 75: 337
doi: 10.1016/j.corsci.2013.06.017
8 Chandra-Ambhorn S, Saranyachot P, Thublaor T. High temperature oxidation behaviour of Fe-15.7 wt.% Cr-8.5wt.%Mn in oxygen without and with water vapour at 700 ℃ [J]. Corros. Sci., 2019, 148: 39
doi: 10.1016/j.corsci.2018.11.023
9 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
曹京宜, 方志刚, 李亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
10 Liu Y C, Zhong X K, Hu J Y. Characteristics and mechanisms of elemental sulfur induced corrosion of sulfur-resistant steels in wet flow CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 369
刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理 [J]. 中国腐蚀与防护学报, 2022, 42: 369
11 Zhao W, Gleeson B. Assessment of the detrimental effects of steam on Al2O3-scale establishment [J]. Oxid. Met., 2015, 83: 607
doi: 10.1007/s11085-015-9541-8
12 Wollgarten K, Galiullin T, Nowak W J, et al. Effect of alloying additions and presence of water vapour on short-term air oxidation behaviour of cast Ni-base superalloys [J]. Corros. Sci., 2020, 173: 108774
doi: 10.1016/j.corsci.2020.108774
13 Maris-Sida M C, Meier G H, Pettit F S. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers [J]. Metall. Mater. Trans., 2003, 34A: 2609
14 Wang J L, Chen M H, Zhu S L, et al. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100 ℃ [J]. Appl. Surf. Sci., 2015, 345: 194
doi: 10.1016/j.apsusc.2015.03.157
15 Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000 ℃ [J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
16 Yang S S, Wang Y Q, Chen M H, et al. Oxidation behavior of Al/Y co-modified nanocrystalline coatings with different Al content on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2020, 170: 108700
doi: 10.1016/j.corsci.2020.108700
17 Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
doi: 10.1016/S1359-6454(97)00346-7
18 Geng S J, Wang F H, Zhang S. Cross-sectional oxide distribution of cast IN738 and its sputtered coating at 1000 ℃ [J]. Surf. Coat. Technol., 2003, 167: 161
doi: 10.1016/S0257-8972(02)00909-X
19 Wang F, Tian X, Li Q, et al. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52 [J]. Thin Solid Films, 2008, 516: 5740
doi: 10.1016/j.tsf.2007.07.131
20 Cheruvu N S, Wei R, Gandy D W. Influence of thermal exposure on the stability of metastable microstructures of sputter deposited nanocrystalline 304 and 310 stainless steel coatings [J]. Surf. Coat. Technol., 2010, 205: 1211
doi: 10.1016/j.surfcoat.2010.10.035
21 Yang L L, Wang J L, Yang R Z, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature [J]. Corros. Sci., 2021, 180: 109182
doi: 10.1016/j.corsci.2020.109182
22 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
23 Yang L L, Chen M H, Wang J L, et al. Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents [J]. Corros. Sci., 2017, 126: 344
doi: 10.1016/j.corsci.2017.07.017
24 Lou H Y, Chen G F. High temperature oxidation behavior of nanocrystalline Ni-Cr-Al super alloys [J]. Corros. Sci. Prot. Technol., 2003, 15: 147
楼翰一, 陈国锋. Ni-Cr-Al纳米晶合金在1000 ℃的高温氧化行为 [J]. 腐蚀科学与防护技术, 2003, 15: 147
25 Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2015, 98: 530
doi: 10.1016/j.corsci.2015.05.062
26 Shi L, Xin L, Wang F H, et al. Influences of nanocrystalline coating on hot corrosion behavior of DD98M alloy [J]. China Surf. Eng., 2017, 30(5): 1
时龙, 辛丽, 王福会 等. 纳米晶涂层对DD98M合金热腐蚀行为的影响 [J]. 中国表面工程, 2017, 30(5): 1
27 Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Zeit. Elektrochem. Berichte Buns. Phys. Chem., 1959, 63:772
28 Tomozawa M. Water diffusion in silica glass and wet oxidation of Si: an interpretation for the high speed of wet oxidation [J]. J. Electrochem. Soc., 2011, 158: G115
doi: 10.1149/1.3560037
29 Åkermark T, Hultquist G. Oxygen exchange in oxidation of an Fe-20Cr-10Al alloy in ~10 mbar O2/H2O-gas mixtures at 920 ℃ [J]. Oxid. Met., 1997, 47: 117
doi: 10.1007/BF01682374
30 Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17: 231
doi: 10.1179/mht.2000.17.2.008
31 Zhang Y, Pint B A, Haynes J A, et al. The effect of water vapor on the oxidation behavior of CVD iron-aluminide coatings [J]. Oxid. Met., 2004, 62: 103
doi: 10.1023/B:OXID.0000038788.02094.cb
[1] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[3] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[4] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[5] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[6] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[8] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[9] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[10] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[11] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] YAN Minsheng, HE Jin, MAO Shoudong, YANG Lijing, NIE Xia, SONG Zhenlun, ZHAN Zhaolin. Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures[J]. 中国腐蚀与防护学报, 2015, 35(2): 183-188.
[13] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[14] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[15] Haibo Lu; Ying Li; Fuhui Wang. Corrosion Characteristics of Cu-20Zr alloy in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2006, 26(2): 75-79 .
No Suggested Reading articles found!