Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 47-54    DOI: 10.11902/1005.4537.2022.162
Current Issue | Archive | Adv Search |
Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone
MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai(), HU Wenbin
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Download:  HTML  PDF(8785KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Besides seawater and marine atmosphere, the service environment of marine equipment such as ships and amphibious aircraft also involves wave splashing. In this work, a corrosion platform in simulated splash zone is constructed, which consists of a simulated splash device and an electrochemical sensor. The localized corrosion of 5083 Al-alloy in simulated splash zone is investigated by using open circuit potential (OCP) measurement, electrochemical impedance spectroscope (EIS) combined with morphology analyses. Experimental results indicate that, compared with the corrosion in the full immersion zone, the alloy suffer severe pitting corrosion, intergranular corrosion and exfoliation corrosion, with a corrosion depth about 40~80 μm. The shape of the pits in the splash zone is closely related to the water flow direction. Under the joint action of the shear force of water flow and corrosion, lamellar exfoliation occurs at the bottom edge of the pit, resulting in a slow change in the depth of the pit with terraced inner walls. The high oxygen content and high seawater splash rate are the main cause of the high localized corrosion susceptibility in the splash zone. There are only scattered small pits of about 5 μm in depth, in the full immersion zone, and most of them originate from inclusions, whilst the inclusion serves as the cathode phase and the surrounding aluminum alloy matrix behaves as anode and is dissolved. EIS fitting results by using the Measurement Model show that the polarization resistance of the 5083 Al-alloy in the splash zone is 20%-50% of that in the full immersion zone, while the effective capacitance is about twice as large as that of the full immersion zone, indicating that the corrosion rate of the splash zone is higher than that of the full immersion zone. A larger effective capacitance in the splash zone corresponds to a coarser surface on which the corrosion products are accumulated.

Key words:  5083 Al-alloy      splash zone      full immersion zone      localized corrosion      electrochemical impedance spectroscopy     
Received:  24 May 2022      32134.14.1005.4537.2022.162
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(52171077)

Cite this article: 

MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 47-54.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.162     OR     https://www.jcscp.org/EN/Y2023/V43/I1/47

Fig.1  Schematic diagrams of splash zone simulating corrosion platform (a) and the location of surface area of 5083 Al-alloy sheet (b)
Fig.2  Schematic diagram of the EIS sensor
Fig.3  Surface morphologies of the 5083 Al-alloy after exposure in simulated atmosphere zone, splash zone and full immersion zone for 0 d (a), 3 d (b), 30 d (c) and 68 d (d)
Fig.4  SEM images of exfoliation corrosion (a, b) and typical pitting corrosion (c, d) of 5083 Al-alloy after exposure in simulated splash zone for 68 d
Fig.5  3D image of the pit formed on 5083 Al-alloy in simulated splash zone (a), and profiles of pit depth along line AB (b)
Fig.6  Corrosion morphologies of 5083 Al-alloy in simulated full immersion zone after exposure for 68 d: (a, b) pitting corrosion, (c) cracks on the surface, (d) enlarged view of typical corrosion pits that initiated from the inclusions
Fig.7  Comparison of pitting depth of 5083 Al-alloy after exposure in simulated atmosphere zone, splash zone and full immersion zone.
Fig.8  Open circuit potentials as a function of time
Fig.9  Nyquist plots of 5083 Al-alloy after exposure in simulated splash zone (a) and full immersion zone (b) for different time
Fig.10  Polarization resistance (a) and effective capacitance (b) obtained from the Measurement Model
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
2 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology [J]. Acta Armamentar., 2016, 37: 1291
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术 [J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
3 Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft [J]. Civil Aircraft Des. Res., 2015, (3): 60
江武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析 [J]. 民用飞机设计与研究, 2015, (3): 60
4 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
5 Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft [J]. Equip. Environ. Eng., 2017, 14(3): 18
孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术 [J]. 装备环境工程, 2017, 14(3): 18
6 Zhang X, Lin M Y, Yang G H, et al. Effect of Er on corrosion behavior of marine engineering 5052 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 686
张欣, 林木烟, 杨光恒 等. Er对海工5052铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 686
7 Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507
8 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
9 Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
翁硕, 俞俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
10 Peng W S, Zhang P H, Li K W, et al. Corrosion behavior of typical stainless steels in marine environment of island in the South China Sea [J]. Equip. Environ. Eng., 2021, 18(11): 35
彭文山, 张彭辉, 李开伟 等. 南海岛礁海洋环境中典型不锈钢浪花飞溅区腐蚀规律 [J]. 装备环境工程, 2021, 18(11): 35
11 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
12 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr. Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
赵伊, 曹京宜, 方志刚 等. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
13 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅲ)—A summary of 16 years exposure testing in splash zone [J]. Corros. Prot., 2003, 24: 47
黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅲ)—海水飞溅区16年暴露试验总结 [J]. 腐蚀与防护, 2003, 24: 47
14 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone [J]. Corros. Prot., 2002, 23: 47
黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅱ)—海水全浸区16年暴露试验总结 [J]. 腐蚀与防护, 2002, 23: 47
15 Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone [J]. Corros. Prot., 2002, 23: 18
黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅰ)—海水潮汐区16年暴露试验总结 [J]. 腐蚀与防护, 2002, 23: 18
16 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
17 Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测 [J]. 中国腐蚀与防护学报, 2012, 32: 247
18 Xia D-H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2022, DOI: 10.11900/0412.1961.2022.00196
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水水气界面作用下的局部腐蚀机制 [J]. 金属学报, 2022, DOI: 10.11900/0412.1961.2022.00196
19 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
20 Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
21 Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy [J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
22 Tan L, Allen T R. Effect of thermomechanical treatment on the corrosion of AA5083 [J]. Corros. Sci., 2010, 52: 548
doi: 10.1016/j.corsci.2009.10.013
23 Park J O, Paik C H, Huang Y H, et al. Influence of Fe-Rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl [J]. J. Electrochem. Soc., 1999, 146: 517
doi: 10.1149/1.1391637
24 Nişancioğlu K. Electrochemical behavior of aluminum-base intermetallics containing iron [J]. J. Electrochem. Soc., 1990, 137: 69
doi: 10.1149/1.2086441
25 Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
[1] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[3] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[4] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[5] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[6] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[7] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[8] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[9] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[10] WEI Huanhuan, ZHENG Dongdong, CHEN Chen, ZHANG Dawei, WANG Kaili. Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[11] WEI Huanhuan, LEI Tianqi, ZHENG Dongdong, XIN Zhenke. Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[12] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[13] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[14] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[15] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
No Suggested Reading articles found!