Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 183-188    DOI: 10.11902/1005.4537.2014.055
Current Issue | Archive | Adv Search |
Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures
YAN Minsheng1,2, HE Jin1,2, MAO Shoudong2, YANG Lijing2, NIE Xia2, SONG Zhenlun2(), ZHAN Zhaolin1()
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(3818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Air oxidation behavior of Sm2Co17 magnets coated with magnetron sputtered NiCrAlY coating was studied at 500, 600 and 700 ℃ in terms of variations of mass gains and magnetic properties. Microstructures, chemical composition, and phase constitution of the coating were analyzed by using scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The results show that the NiCrAlY coating can improve the oxidation resistance of Sm2Co17 magnets in air at 500 and 600 ℃, and its protectiveness declined with the increase of temperature up to 700 ℃. During the oxidation process, the Al atoms moved to the surface and combined with the oxygen atoms to form an oxide film on the surface of NiCrAlY coating, which can effectively maintain the oxidation resistance of NiCrAlY coating.

Key words:  NiCrAlY coating      Sm2Co17 magnet      oxidation      magnetic property      magnetron sputtering     
Received:  01 April 2014     
ZTFLH:  TB304  

Cite this article: 

YAN Minsheng, HE Jin, MAO Shoudong, YANG Lijing, NIE Xia, SONG Zhenlun, ZHAN Zhaolin. Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 183-188.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.055     OR     https://www.jcscp.org/EN/Y2015/V35/I2/183

Fig.1  Surface SEM morphology of the sputtered NiCrAlY coating on the Sm2Co17 magnet (a)and the magnified image of the square area in Fig.1a (b)
Fig.2  Cross section of the NiCrAlY-coated Sm2Co17 magnet
Fig.3  XRD pattern of the sputtered NiCrAlY coating on Sm2Co17 magnet
Fig.4  Cross-sectional SEM images and EDS elements line-scannings across the naked (a~c) and NiCrAlY-coated Sm2Co17 magnets (d~f) after oxidation of 192 h in air at 500 ℃ (a, d), 600 ℃ (b, e) and 700 ℃ (c, f)
Fig.5  XRD patterns of the NiCrAlY coating after oxidation for 192 h at 500 ℃ (a), 600 ℃ (b) and 700 ℃ (c)
Fig.6  Surface SEM morphologies of the NiCrAlY coating on Sm2Co17 magnets after oxidation for 192 h at 500 ℃ (a),600 ℃ (b) and 700 ℃ (c)
Fig.7  Mass gains of the naked and NiCrAlY- coated Sm2Co17 magnets after oxidation for 192 h in air at different temperatures
Fig.8  Hysteresis loops of naked and NiCrAlY-coated Sm2Co17 magnets at 25 ℃ (a) and after oxidation for 192 h at 500 ℃ (b), 600 ℃ (c) and 700 ℃ (d)
Temperature / ℃ Naked magnet NiCrAlY-coated magnets
Hcj / MAm-1 Br / T (BH )max / kJm-3 Hcj / MAm-1 Br / T (BH )max / kJm-3
25 2.69 1.08 219.93 2.68 1.06 210.57
500 0.20 0.38 8.49 2.99 1.05 199.10
600 0.02 0.13 0.48 1.98 0.96 163.93
700 0.01 0.04 0.13 2.12 0.93 133.67
Table 1  Magnetic properties of naked and NiCrAlY-coated Sm2Co17 magnets before and after oxidation of 192 h at 500~700 ℃
[1] Chen C H, Walmer M, Walmer M, et al. Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ≥400 ℃[J]. J. Appl. Phys., 1998, 83(11): 6706
[2] Walmer M S, Chen C H, Walmer M H. A new class of Sm-TM magnets for operating temperatures up to 550 ℃[J]. IEEE Trans. Magn., 2000, 36(5): 3376
[3] Liu J F, Zhang Y, Dimitrov D, et al. Microstructure and high temperature magnetic properties of Sm (Co, Cu, Fe,Zr)z(. =6.7~9.1) permanent magnets[J]. J. Appl. Phys., 1999, 85(5): 2800
[4] Chen C H, Walmer M S, Walmer M H, et al. Thermal stability of Sm-TM high temperature magnets at 300~550 ℃[J]. IEEE Trans. Magn., 2000, 36(5): 3291
[5] Chen C H, Walmer M H, Kottcamp E H, et al. Surface reaction and Sm depletion at 550 ℃ for high temperature Sm-TM magnets[J]. IEEE Trans. Magn., 2001, 37(4): 2531
[6] Liu J F, Walmer M H. Thermal stability and performance data for SmCo 2:17 high-temperature magnets on PPM focusing structures[J]. IEEE Trans. Electron Devices, 2005, 52(5): 899
[7] Liu J F, Marinescu M, Vora P, et al. Effect of temperature and vacuum on the magnetic properties and compositional changes in high temperature Sm-Co magnets[J]. J. Appl. Phys., 2009, 105(7): 07A737
[8] Kim A S. High temperature stability of SmTM magnets[J]. J. Appl. Phys., 1998, 83(11): 6715
[9] Pragnell W M, Williams A J, Evans H E. The oxidation of SmCo magnets[J]. J. Appl. Phys., 2008, 103(7): 07E127
[10] Pragnell W M, Williams A J, Evans H E. The oxidation morphology of SmCo alloys[J]. J. Alloys Compd., 2009, 487(1/2): 69
[11] Qadeer M I, Azhdar B, Hedenqvist M S, et al. Anomalous high temperature oxidation of Sm2(Fe, Co, Cu, Zr)17 particles[J]. Corros. Sci., 2012, 65: 453
[12] Yang Z, Peng X, Feng Q, et al. The mechanism of high temperature oxidation of a SmCo-based magnetic alloy[J]. Corros. Sci., 2012, 61: 72
[13] Mao S, Yan M, Nie X, et al. Evolution and effects of surface degradation layer of Sm2Co17 magnets at high temperatures[J]. J. Appl. Phys., 2014, 115(4): 043912
[14] Chen C, Walmer M H, Liu S. Thermal stability and the effectiveness of coatings for Sm-Co 2:17 high-temperature magnets at temperatures up to 550 ℃[J]. IEEE Trans. Magn., 2004, 40(4): 2928
[15] Chen C H, Huang M Q, Foster J E, et al. Effect of surface modification on mechanical properties and thermal stability of Sm-Co high temperature magnetic materials[J]. Surf. Coat. Technol., 2006, 201(6): 3430
[16] Wang Q, Zheng L, An S, et al. Thermal stability of surface modified Sm2Co17-type high temperature magnets[J]. J. Magn. Magn. Mater., 2013, 331: 245
[17] Zhao H, Peng X, Yang Z, et al. Effect of a thin Cr2O3 film on oxidation at 600 ℃ of a Sm(CobalFe0.22Cu0.08Zr0.02)7.5 alloy[J]. Surf. Coat. Technol., 2013, 226: 22
[18] Yang Z, Peng X, Feng Q, et al. High temperature oxidation and protection of a Sm2(Co, Fe, Cu, Zr)17 alloy[J]. Oxid. Met., 2013, 80(1/2): 73
[19] Li M H, Zhang Z Y, Sun X F, et al. Oxidation behavior of sputter-deposited NiCrAlY coating[J]. Surf. Coat. Technol., 2003, 165(3): 241
[20] Ren X, Wang F. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing[J]. Surf. Coat. Technol., 2006, 201(1/2): 30
[21] Nemirovskii Y R, Khadyev M, Kuznetsov V, et al. Fine structure and phase composition of NiCrAlY sputtered coatings[J]. Prot. Met., 2000, 36(3): 275
[22] Taylor T A, Walsh P N. Dilatometer studies of NiCrAlY coatings[J]. Surf. Coat. Technol., 2004, 188/189: 41
[23] Taylor T A, Walsh P N. Thermal expansion of MCrAlY alloys[J]. Surf. Coat. Technol., 2004, 177/178: 24
[24] Meier G H. Research on oxidation and embrittlement of intermetallic compounds in the US[J]. Werkst. Korros., 1996, 47(11): 595
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[5] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[8] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[9] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[12] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[13] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[14] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[15] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
No Suggested Reading articles found!