Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 38-46    DOI: 10.11902/1005.4537.2022.027
Current Issue | Archive | Adv Search |
Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials
ZHOU Mengxin1, WU Jun1,2(), FAN Zhibin3, ZHOU Xuejie1, CHEN Hao1
1.Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2.Yuli Materials Corrosion National Observation and Research Station, Yuli 841500, China
3.State Grid Shandong Electric Power Research Institute, Jinan 250003, China
Download:  HTML  PDF(644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The on-line monitoring technology for atmospheric corrosion testing of metallic materials and coatings is reviewed. The relevant principle and research status of many on-line monitoring methods, such as resistance probe method, galvanic corrosion cell, electrochemical impedance spectroscopy, electrochemical noise method, surface ultrasonic technology, quartz crystal microbalance technology and radio frequency identification technology are introduced. Meanwhile, the electrochemical method, non-electrochemical method and the combination of different methods are described. Finally, the existed problems to be solved, which related with the current online monitoring of atmospheric corrosion, are summarized, and the future research directions of online monitoring technology of atmospheric corrosion are also prospected in terms of the so called "Internet plus" intelligent anticorrosion rout and the development of corrosion big data.

Key words:  atmospheric corrosion      corrosion on-line monitoring      coating      electrochemical method      corrosion big data     
Received:  24 January 2022      32134.14.1005.4537.2022.027
ZTFLH:  TG172  
Fund: National Science and Technology Resources Investigation Program of China(2019FY010023);Science and Technology Project of State Grid Corporation Headquarters(5200-202016471A-0-0-00)

Cite this article: 

ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 38-46.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.027     OR     https://www.jcscp.org/EN/Y2023/V43/I1/38

1 Liang C F, Hou W T. Atmospheric corrosion and environment [A]. Proceedings of the Fourth National Corrosion Conference [C]. Beijing, 2003: 77
梁彩凤, 侯文泰. 大气腐蚀与环境 [A]. 第四届全国腐蚀大会论文集 [C]. 北京, 2003: 77
2 Liu K J. Classification and evaluation of environment of atmospheric corrosion [J]. Total Corros. Control, 2015, 29(10): 26
刘凯吉. 大气腐蚀环境的分类及腐蚀性评定 [J]. 全面腐蚀控制, 2015, 29(10): 26
3 Cao C N. The Natural Environment of Chinese Materials Corrodes [M]. Beijing: Chemical Industry Press, 2005: 105
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 105
4 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
5 Liu C B, Wang Q, Niu C D, et al. Monitoring technology for corrosion coupon in oil casing [J]. Well Logging Technol., 2020, 44: 418
刘春斌, 王琦, 牛承东 等. 油套管腐蚀挂片监测技术 [J]. 测井技术, 2020, 44: 418
6 Cao X L, Deng H D, Lan W, et al. Electrochemical investigation on atmospheric corrosion of carbon steel under different environmental parameters [J]. Anti-Corros. Methods Mater., 2013, 60: 199
doi: 10.1108/ACMM-Apr-2012-1170
7 Li X G. Research progress and prospects of materials environmental corrosion [J]. Bull. Natl. Nat. Sci. Found. China, 2012, 26: 257
李晓刚. 我国材料自然环境腐蚀研究进展与展望 [J]. 中国科学基金, 2012, 26: 257
8 Hudson J C. Corrosion research: the British iron and steel research association part 1—corrosion of bare ferrous metals [J]. Anti-Corros. Methods Mater., 1957, 4: 320
doi: 10.1108/eb019381
9 Wang Y P, An J F. Comparative analysis of corrosion monitoring results between resistance probe technology and weight loss method [J]. Mater. Prot., 2021, 54(6): 72
王一品, 安江峰. 电阻探针技术和挂片失重法腐蚀监测结果的对比分析[J]. 材料保护, 2021, 54(6): 72
10 Chen X X, Huang W C, Xu X D, et al. Application of corrosion monitoring system based on resistance probe in cyclic salt mist test [J]. Environ. Technol., 2021, 39(2): 22
陈心欣, 黄文长, 许雪冬 等. 基于电阻探针的腐蚀监测系统在循环盐雾试验中的应用 [J]. 环境技术, 2021, 39(2): 22
11 Li Q W, Yang Q A, Dong Z H, et al. Resistor method on-line corrosion monitoring instrument for high pressure gas pipeline [P]. Chin Pat, 201218804, 2012
李琼玮, 杨全安, 董泽华 等. 高压天然气管道电阻法在线腐蚀监测仪 [P]. 中国专利, 201218804, 2012)
12 Li J, Cai W H, Du S M, et al. Online monitoring method for corrosion of tower drum of offshore wind turbine generator [P]. Chin Pat, 112343775A, 2021
李晶, 蔡文河, 杜双明 等. 一种海上风电机组塔筒腐蚀在线监测方法 [P]. 中国专利, 112343775A, 2021)
13 Bai R L, Dong Z H, Guo X P, et al. Study on principle of electrical resistance probe based on-temperature compensation for corrosion monitoring [J]. Corros. Sci. Prot. Technol., 2007, 19: 338
柏任流, 董泽华, 郭兴蓬 等. 基于温度补偿的电阻探针腐蚀监测原理的研究 [J]. 腐蚀科学与防护技术, 2007, 19: 338
14 Zhen L Q. Data errors analysis of real-time electric resistance probe and treatment [J]. Corros. Prot. Petrochem. Ind., 2010, 27(2): 31
郑丽群. 电阻探针实时监测数据的误差分析与处理 [J]. 石油化工腐蚀与防护, 2010, 27(2): 31
15 Zhang W L, Feng D C, Dong L, et al. Numerical simulation of correlation between resistance change and corrosion degree of bar resistance probe [J]. Corros. Prot., 2020, 41(4): 54
张文亮, 冯大成, 董亮 等. 条形电阻探针电阻变化与腐蚀程度相关性的数值模拟 [J]. 腐蚀与防护, 2020, 41(4): 54
16 Tian Y H. High sensitivity film electrical resistance sensors for atmospheric corrosion monitoring [D]. Wuhan: Huazhong University of Science and Technology, 2016
田云航. 用于大气腐蚀监测的薄膜电阻传感器研制 [D]. 武汉: 华中科技大学, 2016
17 Liu L, Xu Y Z, Wang Z M, et al. Probing and separating corrosion and erosion of pipeline steel using electrical resistance method in conjunction with electrochemical measurements [J]. Measurement, 2021, 183: 109707
18 Mizuno D, Suzuki S, Fujita S, et al. Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor (ACM) sensor [J]. Corros. Sci., 2014, 83: 217
doi: 10.1016/j.corsci.2014.02.020
19 Zhang X D. Annual variation of Marine atmospheric corrosive environment conditions was measured by ACM corrosion sensor [J]. Wisco Technol., 1995, (2): 58
章兴德. 用ACM型腐蚀传感器测定海洋大气腐蚀环境条件的年变化 [J]. 武钢技术, 1995, (2): 58
20 Jin Y H, Ha M G, Jeon S H, et al. Evaluation of corrosion conditions for the steel box members by corrosion monitoring exposure test [J]. Constr. Build. Mater., 2020, 258: 120195
doi: 10.1016/j.conbuildmat.2020.120195
21 Yao X, Zhang M, Yu J F. Development of remote corrosion monitor for power grid equipment [J]. Hubei Electr. Power, 2019, 43(4): 45
姚鑫, 张明, 余建飞. 电网设备远程腐蚀监测仪研制 [J]. 湖北电力, 2019, 43(4): 45
22 Zhang C S. Prediction technology of corrosion resistance life of different parts of weather-resistant steel bridge [J]. World Bridges, 2002, (1): 55
张朝生. 耐候性钢桥不同部位耐蚀性寿命的预测技术 [J]. 国外桥梁, 2002, (1): 55
23 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王军, 陈军君, 谢亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
24 Jiang X, Qu D R, Liu X H. Research development of top of line corrosion (TLC) in wet natural gas pipelines [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 86
蒋秀, 屈定荣, 刘小辉. 湿气管线的顶部腐蚀研究概况 [J]. 中国腐蚀与防护学报, 2011, 31: 86
25 Cai Y Y, Wang M Y, Pu D, et al. A novel sensor of monitoring top of line corrosion based on multi-electrode system [J]. Corros. Prot., 2021, 42(8): 1
蔡伊扬, 王明昱, 蒲定 等. 一种基于多电极体系的新型顶部腐蚀监测传感器 [J]. 腐蚀与防护, 2021, 42(8): 1
26 Mu X, Wei J, Dong J H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043
doi: 10.1016/j.jmst.2014.03.013
27 Encinas-sánchez V, de Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): an efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Sol. Energy Mater. Sol. Cells, 2019, 191: 157
doi: 10.1016/j.solmat.2018.11.007
28 Ribeiro D V, Abrantes J C C. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach [J]. Constr. Build. Mater., 2016, 111: 98
doi: 10.1016/j.conbuildmat.2016.02.047
29 Liao X N, Cao F H, Chen A N, et al. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1239
doi: 10.1016/S1003-6326(11)61311-3
30 Shitanda I, Okumura A, Itagaki M, et al. Screen-printed atmospheric corrosion monitoring sensor based on electrochemical impedance spectroscopy [J]. Sens. Actuators, 2009, 139B: 292-297
31 Bai D. Electrochemical correlation study of on-line corrosion monitoring probes [D]. Harbin: Harbin Institute of Technology, 2012
白丹. 在线腐蚀监测探针的电化学相关性探究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
32 Nishikata A, Suzuki F, Tsuru T. Corrosion monitoring of nickel-containing steels in marine atmospheric environment [J]. Corros. Sci., 2005, 47: 2578
doi: 10.1016/j.corsci.2004.10.009
33 Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
34 He Y T, Zhong X K, Hu J Y, et al. Monitoring corrosion fatigue crack formation on drill steel using electrochemical impedance spectroscopy: experiment and modeling [J]. Corros. Sci., 2020, 175: 108880
doi: 10.1016/j.corsci.2020.108880
35 Sun X G, Wang R, Zhang Z Y, et al. On-line corrosion monitoring technology for high-speed train in dynamic service circumstance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 441
孙晓光, 王睿, 张志毅 等. 高速列车动态服役环境腐蚀在线监测技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 441
36 Liu X L, He J P, Chen S J. Electrochemical noise of 7075 aluminum alloy during a simulated atmospheric corrosion process [J]. Corros. Sci. Prot. Technol., 2006, 18: 386
刘晓磊, 何建平, 陈素晶. 电化学噪声表征7075铝合金的模拟大气腐蚀过程 [J]. 腐蚀科学与防护技术, 2006, 18: 386
37 Han L, Song S Z, Zhang Z. Applying electrochemical noise technique to detect the atmospheric corrosion of aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 471
韩磊, 宋诗哲, 张正. 电化学噪声技术在铝合金大气腐蚀检测中的应用 [J]. 中国腐蚀与防护学报, 2009, 29: 471
38 Xia D H, Song Y, Song S Z, et al. Detection of atmospheric corrosion of 316L stainless steels by electrochemical noise: theoretical model and applications [J]. Corros. Sci. Prot. Technol., 2019, 31: 557
夏大海, 宋扬, 宋诗哲 等. 316L不锈钢大气腐蚀的电化学噪声检测: 理论模型与应用 [J]. 腐蚀科学与防护技术, 2019, 31: 557
39 Zhang Z Z. Research and development of electrochemical noise measurement method for metal corrosion [J]. China Met. Bull., 2021, (9): 182
张中正. 金属腐蚀电化学噪声测量法的研究与进展 [J]. 中国金属通报, 2021, (9): 182
40 Li H J, Wang Q S, Liao Z H, et al. Electrochemical noise behavior of X70 steel and its weld in Cl--containing high pH solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 60
李鸿瑾, 王歧山, 廖子涵 等. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 60
41 Xia D H, Ma C, Song S Z, et al. Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique [J]. Sens. Actuators, 2017, 252B: 353
42 Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: a review of contemporary methods [J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
43 Liu P, Hu Y, Chen Y, et al. Investigation of novel embedded piezoelectric ultrasonic transducers on crack and corrosion monitoring of steel bar [J]. Constr. Build. Mater., 2020, 235: 117495
doi: 10.1016/j.conbuildmat.2019.117495
44 Zou F X, Cegla F B. On quantitative corrosion rate monitoring with ultrasound [J]. J. Electroanal. Chem., 2018, 812: 115
doi: 10.1016/j.jelechem.2018.02.005
45 Majhi S, Mukherjee A, George N V, et al. Corrosion monitoring in steel bars using laser ultrasonic guided waves and advanced signal processing [J]. Mech. Syst. Signal Process., 2021, 149: 107176
doi: 10.1016/j.ymssp.2020.107176
46 Wang F P, Yan C W, Zhang X Y, et al. Quartz crystal microbalance and its applications in atmospheric corrosion studies [J]. Chemistry, 2001, 64: 382
王凤平, 严川伟, 张学元 等. 石英晶体微天平 (QCM) 及其在大气腐蚀研究中的应用 [J]. 化学通报, 2001, 64: 382
47 Forslund M, Majoros J, Leygraf C. A sensor system for high resolution in situ atmospheric corrosivity monitoring in field environments [J]. J. Electrochem. Soc., 1997, 144: 2637
doi: 10.1149/1.1837876
48 Wan Y, Yu H, Wang Y N. Atmospheric corrosion of plated aluminum in situ with the quartz crystal microbalance [J]. J. Shenyang Jianzhu Univ. (Nat. Sci.), 2009, 25: 722
万晔, 于欢, 王艳娜. 石英晶体微天平原位研究铝的大气腐蚀 [J]. 沈阳建筑大学学报 (自然科学版), 2009, 25: 722
49 Wang F P, Yan C W, Zhang X Y, et al. Corrosion kinetics of zinc under thin electrolyte film by means of QCM [J]. Acta Phys. Chim. Sin., 2001, 17: 319
doi: 10.3866/PKU.WHXB20010408
王凤平, 严川伟, 张学元 等. 石英晶体微天平研究Zn在薄液膜下的腐蚀动力学 [J]. 物理化学学报, 2001, 17: 319
50 Qu Q, Yan C W, Cao C N. Effect of NaCl on initial atmospheric corrosion of zinc by using quartz crystal microbalance [J]. Corros. Sci. Prot. Technol., 2002, 14: 139
屈庆, 严川伟, 曹楚南. 用石英晶体微天平研究NaCl对Zn大气腐蚀的影响 [J]. 腐蚀科学与防护技术, 2002, 14: 139
51 Wan S, Ma X Z, Miao C H, et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance [J]. Corros. Sci., 2020, 170: 108692
doi: 10.1016/j.corsci.2020.108692
52 Zakipour S, Leygraf C, Portnoff G. ChemInform abstract: studies of corrosion kinetics on electrical contact materials by means of quartz crystal microbalance and XPS [J]. Chem. Informationsdienst, 1986, 17(39): 24
53 Bu G Q. Research of radio frequency identification hoisting machinery technology [J]. Hoisting Conveyin Mach., 2011, (3): 74
卜广强. 射频识别起重机械的应用技术研究 [J]. 起重运输机械, 2011, (3): 74
54 Yasri M, Lescop B, Diler E, et al. Monitoring uniform and localised corrosion by a radiofrequency sensing method [J]. Sens. Actuators, 2018, 257B: 988
55 Zhang H, Yang R Z, He Y Z, et al. Identification and characterisation of steel corrosion using passive high frequency RFID sensors [J]. Measurement, 2016, 92: 421
doi: 10.1016/j.measurement.2016.06.041
56 Hamlaoui Y, Pedraza F, Tifouti L. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy [J]. Corros. Sci., 2008, 50: 1558
doi: 10.1016/j.corsci.2008.02.010
57 Dong Y Y. Design and application research of on-line corrosion monitoring sensor based on impedance analysis [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018
董叶语. 基于阻抗分析的腐蚀监测传感器的设计与应用研究 [D]. 南京: 南京航空航天大学, 2018
58 Su Q, Allahar K, Bierwagen G. Embedded electrode electrochemical noise monitoring of the corrosion beneath organic coatings induced by ac-dc-ac conditions [J]. Electrochim. Acta, 2008, 53: 2825
doi: 10.1016/j.electacta.2007.10.063
59 Liang Y, Wei S C, Sun H Y, et al. A system of coating corrosion monitoring based on corrosion potential [J]. Corros. Prot., 2011, 32(9): 725
梁义, 魏世丞, 孙虎元 等. 一种基于腐蚀电位的涂层腐蚀监测系统 [J]. 腐蚀与防护, 2011, 32(9): 725
60 Ju P F, Zhao X N, Xiong L L, et al. Effects of fluorescent agent on sensitivity of corrosion monitoring of anticorrosion coatings on aluminum alloy [J]. China Surf. Eng., 2018, 31(3): 116
鞠鹏飞, 赵祥妮, 熊亮亮 等. 荧光剂对铝合金防护涂层腐蚀监测敏感性的影响 [J]. 中国表面工程, 2018, 31(3): 116
61 Lv J, Yue Q X, Ding R, et al. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes [J]. J. Taiwan Inst. Chem. Eng., 2021, 118: 309
doi: 10.1016/j.jtice.2020.12.032
62 Tao L. Research on corrosion detection technologies for typical metals and coating system in nature environment [D]. Tianjin: Tianjin University, 2009
陶蕾. 典型金属材料和涂层体系自然环境腐蚀检测技术研究 [D]. 天津: 天津大学, 2009
63 Latif J, Khan Z A, Stokes K. Structural monitoring system for proactive detection of corrosion and coating failure [J]. Sens. Actuators, 2019, 301A: 111693
64 Liu J H, Shao Y W, Meng G Z, et al. Analysis of corrosion process of thin organic coatings using EIS and EN methods [J]. Paint Coat. Ind., 2008, 38(6): 62
刘继慧, 邵亚薇, 孟国哲 等. 利用电化学阻抗谱和电化学噪声分析薄有机涂层的腐蚀过程 [J]. 涂料工业, 2008, 38(6): 62
65 Song S Z, Wang S Y, Gao Z M, et al. Atmospheric forepart corrosion behaveiors of nonferrous metal based on image recognition [J]. Acta Metall. Sin., 2002, 38: 893
宋诗哲, 王守琰, 高志明 等. 图像识别技术研究有色金属大气腐蚀早期行为 [J]. 金属学报, 2002, 38: 893
[1] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[4] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[5] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[6] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[7] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[8] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[9] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[10] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[11] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[12] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[13] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[14] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[15] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
No Suggested Reading articles found!