Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 152-158    DOI: 10.11902/1005.4537.2022.023
Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy
ZHANG Jiahuan1,2, CUI Zhongyu1(), FAN Lin2, SUN Mingxian2
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Download:  HTML  PDF(8271KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of heat treatments on the microstructure and corrosion behavior of Ti6321 Ti-alloy in artificial seawater and 5 mol/L hydrochloric acid solution was investigated by means of XRD, electrochemical tests, SEM and confocal laser scanning microscope. Results show that the three groups of Ti6321 Ti-alloy, which has been subjected to three different heat treatments, exhibit excellent passivation ability in artificial seawater with more or less the same level of corrosion resistance. In 5 mol/L HCl solution, the corrosion resistance of the Ti6321 Ti-alloy with widmanstatten structure is the worst, followed by equiaxed ones, while the alloy with double structure presents the best corrosion resistance.

Key words:  Ti6321 alloy      microstructure      artificial seawater solution      hydrochloric acid      corrosion resistance     
Received:  19 January 2022      32134.14.1005.4537.2022.023
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51931008)

Cite this article: 

ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 152-158.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.023     OR     https://www.jcscp.org/EN/Y2023/V43/I1/152

Fig.1  Equiaxed (a), double (b) and widmanstatten (c) structures of Ti6321 alloy after heat treatment under three different conditions
Fig.2  SEM observations of Ti6321 alloy after heat treatment under three different conditions: (a) equiaxed structure, (b) double structure, (c) widmanstatten structure
Fig.3  XRD patterns of Ti6321 alloy after heat treatment under three different conditions
Fig.4  Self-corrosion potentials of Ti6321 alloy samples with three different structures in artificial seawater (a) and 5 mol/L HCl solution (b)
Fig.5  Polarization curves of Ti6321 alloy samples with three different structures in artificial seawater (a) and in 5 mol/L HCl solution (b)
StructureEcorr / VSCEIp / A·cm-2Epit / VSCEIcorr / A·cm-2
Double-0.454.95×10-6---3.39×10-7
Equiaxed-0.525.11×10-6---4.49×10-6
Widmanstatten-0.576.21×10-6---5.80×10-6
Table 1  Tafel fitting results of polarization curves of Ti6321 alloy samples with three different structures in artificial seawater
StructureEcorr / VSCEIp / A·cm-2Epit / VSCEEpp-Epit / VSCEIcorr / A·cm-2
Double-0.591.35×10-5----0.14-1.441.35×10-7
Equiaxed-0.621.71×10-5---0.15-1.371.29×10-6
Widmanstatten-0.651.74×10-40.950.18-0.882.68×10-6
Table 2  Tafel fitting results of polarization curves of Ti6321 alloy samples with three different structures in 5 mol/L HCl solution
Fig.6  Electrochemical impedance spectra of Ti6321 alloy samples with three different structures in artificial seawater (a, c, e) and 5 mol/L HCl solution (b, d, f)
StructureRS / Ω·cm2Rp / Ω·cm2Qdl / Ω-1·cm-2·SnN
Double21.224.098×1054.013×10-50.93
Equiaxed21.033.671×1055.049×10-50.83
Widmanstatten242.527×1053.451×10-50.94
Table 3  Fitting results of EIS of Ti6321 alloy samples with three different structures in artificial seawater
StructureRs / Ω·cm2Qdl / Ω-1·cm-2·Snn1Rct / Ω·cm2Qf / Ω-1·cm-2·Snn2Rf / Ω·cm2
Double4.70.000280.90462.50.033630.85509.6
Equiaxed4.60.000330.88317.50.039680.83329.7
Widmanstatten6.60.000300.89290.10.043180.87235.6
Table 4  Fitting results of EIS of Ti6321 alloy samples with three different structures in 5 mol/L HCl solution
Fig.7  CLSM surface morphologies of Ti6321 alloy samples after immersion for 10 d in 5 mol/L HCl solution: (a) equiaxed structure, (b) double structure, (c) widmanstatten structure
Fig.8  SEM surface morphologies of Ti6321 alloy samples after immersion for 10 d in 5 mol/L HCl solution: (a) equiaxed structure, (b) double structure, (c) widmanstatten structure
1 Zhou D D, Zeng W D, Xu J W, et al. Characterization of hot workability for a near alpha titanium alloy by integrating processing maps and constitutive relationship [J]. Adv. Eng. Mater., 2019, 21: 1801232
doi: 10.1002/adem.201801232
2 Lu L L, Zhang Y M, Zhang Z L, et al. Investigation on microstructure and texture evolution of Ti-6Al-3Nb-2Zr-1Mo alloy during hot deformation [J]. Mater. Res. Express, 2021, 8: 096520
3 Zhu D D, Dong D, Ni C Y, et al. Effect of heat treatment on microstructure evolution of Ti-48Al alloy solidified under high pressure [J]. Chin. J. Nonferrous Met., 2015, 25: 58
朱冬冬, 董多, 倪成员 等. 热处理对高压凝固Ti-48Al合金组织演变的影响 [J]. 中国有色金属学报, 2015, 25: 58
4 Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
doi: 10.1007/s40195-019-00958-4
5 Liu L. Influence of microstructures of titanium alloy on ultrasound parameters and corrosion-resistance [D]. Nanchang: Nanchang Hangkong University, 2011
刘俪. 钛合金显微组织对其超声参量及耐蚀性能的影响 [D]. 南昌: 南昌航空大学, 2011
6 Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mat. Eng., 2021, 50: 552
王可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
7 Su B X, Wang B B, Luo L S, et al. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74: 143
doi: 10.1016/j.jmst.2020.08.066
8 Su B X, Luo L S, Wang B B, et al. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62: 234
doi: 10.1016/j.jmst.2020.05.058
9 Meng K. Study on corrosion behavior of TA31 alloy in hydrochloric acid solution [D]. Qinhuangdao: Yanshan University, 2019
孟康. TA31合金在盐酸溶液中的腐蚀行为研究 [D]. 秦皇岛: 燕山大学, 2019
10 Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti-6Al-3Nb-2Zr-1Mo alloy tube [J]. Mater. Sci. Eng., 2019, 766A: 138346
11 Xiong J H, Li S K, Gao F Y, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW [J]. Mater. Sci. Eng., 2015, 640A: 419
12 Zhang S, Zhang Y Q, Zou Z Y, et al. The microstructure and tensile properties of additively manufactured Ti-6Al-2Zr-1Mo-1V with a trimodal microstructure obtained by multiple annealing heat treatment [J]. Mater. Sci. Eng., 2022, 831A: 142241
13 Cai D G, Zhao X T, Yang L, et al. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81: 13
doi: 10.1016/j.jmst.2021.01.015
14 Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
严少坤, 郑大江, 韦江 等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
15 Prando D, Brenna A, Bolzoni F M, et al. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium [J]. J. Appl. Biomater. Funct. Mater., 2017, 15: 19
16 Delgado-Alvarado C, Sundaram P A. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution [J]. Acta Biomater., 2006, 2: 701
pmid: 16887397
17 Liu X, Ran D, Meng H M, et al. Effect of surface state on corrosion resistance of TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 828
刘星, 冉斗, 孟惠民 等. 表面状态对TC4钛合金的耐蚀性影响 [J]. 中国腐蚀与防护学报, 2021, 41: 828
18 Souza M E P, Lima L, Lima C R P, et al. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications [J]. J. Mater. Sci.: Mater. Med., 2009, 20: 549
doi: 10.1007/s10856-008-3623-y
19 Yu S Y, Scully J R, Vitus C M. Influence of niobium and zirconium alloying additions on the anodic dissolution behavior of activated titanium in HCl solutions [J]. J. Electrochem. Soc., 2001, 148: B68
doi: 10.1149/1.1337605
20 Shapovalov O V, Shapovalova O M, Ivchenko T I. Corrosion and mechanical properties of titanium alloyed with aluminum, iron, and molybdenum [J]. Mater. Sci., 2006, 42: 615
21 Zhang W J, Song X Y, Hui S X, et al. The effects of Mo content on microstructure and high temperature tensile behavior of Ti-6.5Al-2Sn-4Zr-xMo-2Nb-1W-0.2Si titanium alloys [J]. Mater. High Temp., 2017, 34: 179
doi: 10.1080/09603409.2016.1266763
22 Chen J R, Tsai W T. In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM [J]. Electrochim. Acta, 2011, 56: 1746
doi: 10.1016/j.electacta.2010.10.024
23 Cui Y W, Chen L Y, Liu X X. Pitting corrosion of biomedical titanium and titanium alloys: a brief review [J]. Curr. Nanosci., 2021, 17: 241
doi: 10.2174/1573413716999201125221211
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[5] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[6] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[7] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[8] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[9] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[10] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[11] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[12] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[13] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[14] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
No Suggested Reading articles found!