Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 752-758    DOI: 10.11902/1005.4537.2021.246
Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution
PAN Xin1, REN Ze2, LIAN Jingbao1, HE Chuan1, ZHENG Ping1, CHEN Xu1()
1.College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.Jining Operation Area, Shandong Operation and Maintenance Center, National Petroleum and Natural Gas Pipeline Network Group Co. Ltd., Jining 272000, China
Download:  HTML  PDF(6271KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of super 13Cr stainless steel subjected to different heat treatment processes in CO2-saturated oilfield formation water was assessed by means of metallographic microscope, XRD, electrochemical experiment and slow strain rate tensile method. The results showed that reversed austenite appeared in the super 13Cr SS after tempering at 620 ℃. A secondary tempering treatment could result in the increment of the amount of reversed austenite. There exists a passivation interval on polarization curves in CO2-saturated oilfield formation solution for all the super 13Cr SSs after being subjected to different heat treatments. The tempering process could result in decrease in the corrosion resistance of super 13Cr SS, in the contrast, a secondary tempering could result in an enhancing effect. The corrosion resistance of super 13Cr SS was related to the content of reversed austenite. The oil-quenched 13Cr SS had the highest SCC sensitivity. The SCC mechanism of the quenched 13Cr SS, as well as the 13Cr SSs tempered at 550 and 690 ℃, respectively were all hydrogen induced cracking. The SCC sensitivity of 13Cr SSs after subjected to 620 ℃-tempering and 650 ℃+620 ℃ double-tempering, decreased due to the presence of reversed austenite, accordingly, the cracking mechanism was mixed fracture.

Key words:  super 13Cr stainless steel      heat treatment      oilfield formation solution      CO2 corrosion     
Received:  18 September 2021     
ZTFLH:  TG174  
Fund: "Chunhui" International Cooperation Project of the Ministry of Education and General Program of the Education Department of Liaoning(LJKZ0416)
Corresponding Authors:  CHEN Xu     E-mail:  cx0402@sina.com
About author:  CHEN Xu, E-mail: cx0402@sina.com

Cite this article: 

PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 752-758.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.246     OR     https://www.jcscp.org/EN/Y2022/V42/I5/752

Sample numberHeat treatment condition
A1050 ℃×0.5 h oil cooling
B1050 ℃×0.5 h water cooling +550 ℃×6 h furnace cooled
C1050 ℃×0.5 h water cooling+620 ℃×6 h furnace cooled
D1050 ℃×0.5 h water cooling+690 ℃×6 h furnace cooled
E1050 ℃×0.5 h oil cooling+650 ℃×2 h furnace cooled+620 ℃×6 h furnace cooled
Table 1  Heat treatment processes of super 13Cr stainless steel
Fig.1  Diagram of sample size for SSRT (unit: mm)
Fig.2  Microstructure morphologies of super 13Cr stainless steel after heat treatments under the conditions of quenching (a), tempering at 550 ℃ (b), 620 ℃ (c) and 690 ℃ (d), and two-stage tempering (e)
Fig.3  XRD patterns of Super 13Cr stainless steel samples after heat treatments under different conditions
Fig.4  Polarization curves of various heat-treated super 13Cr stainless steel in CO2-saturated oilfield formation solution
Heat treatment conditionIp / μA·cm-2Ep / V
Quenching2.960.05
550 ℃-tempering4.47-0.04
620 ℃-tempering4.26-0.02
690 ℃-tempering4.52-0.12
Two-stage tempering3.890
Table 2  Fitting results of the polarization curves
Fig.5  Nyquist (a), Bode (b) plots of various heat-treated super 13Cr stainless steel in CO2-saturated oilfield formation solution and Equivalent circuit diagram (c)
Heat treatment conditionsRsΩ·cm-2RfΩ·cm-2CPEdlF·cm-2RctΩ·cm-2
quenching5.7329.409.74×10-66.38×104
550 ℃-tempering4.407.641.26×10-53.23×104
620 ℃-tempering4.7016.931.21×10-55.30×104
690 ℃-tempering4.523.221.79×10-52.69×104
Two-stage tempering5.3419.041.14×10-55.52×104
Table 3  EIS fitting results of super 13Cr stainless steel of various heat treatment
Fig.6  SSRT curves (a) and reductions of area and elongations (b) of various heat-treated super 13Cr stainless steel in CO2-saturated oilfield formation solution
Fig.7  SEM images of the main fractures and side fractures of super 13Cr stainless steel with heat treatments under the conditions of quenching (a1, a2), tempering at 550 ℃ (b1, b2), 620 ℃ (c1, c2) and 690 ℃ (d1, d2) and two-stage tempering (e1, e2)
1 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
doi: 10.1016/j.electacta.2016.01.094
2 Ren Z, Chen X, Dong P, et al. Effect of heat treatment process on microstructure and tensile properties of super 13Cr stainless steel [J]. Iron Steel, 2019, 54(7): 68
任泽, 陈旭, 董培 等. 热处理对超级13Cr不锈钢组织及拉伸性能的影响 [J]. 钢铁, 2019, 54(7): 68
3 Xiao G Q, Tan S Z, Yu Z M, et al. CO2 corrosion behaviors of 13Cr steel in the high-temperature steam environment [J]. Petroleum, 2020, 6: 106
doi: 10.1016/j.petlm.2019.12.001
4 Zhang Z, Zheng Y S, Li J, et al. Stress corrosion crack evaluation of super 13Cr tubing in high-temperature and high-pressure gas wells [J]. Eng. Fail. Anal., 2019, 95: 263
doi: 10.1016/j.engfailanal.2018.09.030
5 Rodrigues C A D, Lorenzo P L D, Sokolowski A, et al. Titanium and molybdenum content in supermartensitic stainless steel [J]. Mater. Sci. Eng., 2007, 460/461A: 149
6 Kimura M, Miyata Y, Toyooka T, et al. Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe [J]. Corrosion, 2001, 57: 433
doi: 10.5006/1.3290367
7 Gervasi C A, Méndez C M, Bilmes P D, et al. Analysis of the impact of alloy microstructural properties on passive films formed on low-C 13CrNiMo martensitic stainless steels [J]. Mater. Chem. Phys., 2011, 126: 178
doi: 10.1016/j.matchemphys.2010.11.043
8 He X, Li J, Li S H, et al. Effects of tempering temperature after cryogenic treatment on microstructure and pitting resistance of 15Cr super martensite stainless steel [J]. Heat Treat. Met., 2020, 45(11): 62
何潇, 李俊, 李绍宏 等. 深冷处理后回火温度对15Cr超级马氏体不锈钢组织及耐点蚀性能的影响 [J]. 金属热处理, 2020, 45(11): 62
9 Chen Z Y, Zhang X Y, Wang F P, et al. The mechanism and influence factors of CO2 corrosion [J]. Dev. Appl. Mater., 1998, 13(5): 34
陈卓元, 张学元, 王凤平 等. 二氧化碳腐蚀机理及影响因素 [J]. 材料开发与应用, 1998, 13(5): 34
10 Chen X, Li C Y, Ming N X, et al. Effects of temperature on the corrosion behaviour of X70 steel in CO2-containing formation water [J]. J. Nat. Gas Sci. Eng., 2021, 88: 103815
doi: 10.1016/j.jngse.2021.103815
11 Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide [J]. Mater. Prot., 2012, 45(6): 58
张国超, 张涵, 牛坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能 [J]. 材料保护, 2012, 45(6): 58
12 Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment [J]. Hot Work. Technol., 2012, 41(10): 71
刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究 [J]. 热加工工艺, 2012, 41(10): 71
13 Lv X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为 [J]. 北京科技大学学报, 2010, 32: 207
14 Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究 [J]. 宝钢技术, 2020, (1): 7
15 Liu Y J, Lv X H, Zhao G X, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under drilling and completion fluids environment [J]. J. Mater. Eng., 2012, (10): 17
刘亚娟, 吕祥鸿, 赵国仙 等. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究 [J]. 材料工程, 2012, (10): 17
16 Han Y, Zhao X H, Bai Z Q, et al. Corrosion behavior of super 13Cr stainless steel in Cl-/CO2 medium at different temperatures [J]. Corros. Prot., 2011, 32: 366
韩燕, 赵雪会, 白真权 等. 不同温度下超级13Cr在Cl-/CO2环境中的腐蚀行为 [J]. 腐蚀与防护, 2011, 32: 366
17 Zhu D J, Liu X X, Lin Y H, et al. Corrosion behavior of oil tubular goods under supercritical CO2 conditions in high temperature and high pressure sour gas wells [J]. Mater. Prot., 2017, 50(3): 79
朱达江, 刘晓旭, 林元华 等. 高温高压酸性气井油套管钢在超临界CO2环境下的腐蚀行为 [J]. 材料保护, 2017, 50(3): 79
18 Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Mater. Sci. Eng., 2006, 428A: 73
19 Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scr. Mater., 2001, 45: 767
doi: 10.1016/S1359-6462(01)01093-4
20 Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J]. Mater. Charact., 2001, 46: 285
doi: 10.1016/S1044-5803(00)00099-1
21 Zhu J S. The behavior of hot deformation and heat treatment of 13Cr4Ni martensitic stainless steel [D]. Nanning: Guangxi University, 2019
朱觉顺. 13Cr4Ni马氏体不锈钢热变形行为与热处理工艺研究 [D]. 南宁: 广西大学, 2019
22 Chen W, Peng Q. Effect of chloride ion concentration in sodium chloride solution saturated with carbon dioxide on corrosion behavior of 2Cr13 stainless steel [J]. Mater. Prot., 2013, 46(2): 26
陈伟, 彭乔. CO2饱和NaCl溶液中Cl-浓度对2Cr13不锈钢腐蚀行为的影响 [J]. 材料保护, 2013, 46(2): 26
23 Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
doi: 10.1016/j.apsusc.2018.10.237
24 Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution [J]. J. Mater. Eng. Perform., 2011, 20: 1330
doi: 10.1007/s11665-010-9769-z
25 Lei B, Ma Y T, Li Y, et al. Effect of saturated CO2 on corrosion behavior of 13Cr pipe steel in high chloride environment [J]. Corros. Sci. Prot. Technol., 2013, 25: 95
雷冰, 马元泰, 李瑛 等. 高氯环境中饱和CO2对13Cr油管钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2013, 25: 95
26 Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
27 Yin H, Li Q, Li J X, et al. Study on hydrogen embrittlement for pre-charged maraging steel [J]. Surf. Technol., 2016, 45(7): 22
尹航, 李倩, 李金许 等. 预充氢马氏体时效钢的氢脆性能研究 [J]. 表面技术, 2016, 45(7): 22
28 Xie C Q, Li J X, Li Q, et al. Effect of precipitate on hydrogen diffusion coefficient of TM210 maraging steel [J]. Trans. Mater. Heat Treat., 2014, 35(11): 33
谢春乾, 李金许, 李倩 等. 析出相对马氏体时效钢氢扩散系数的影响 [J]. 材料热处理学报, 2014, 35(11): 33
[1] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[2] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[3] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[7] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[8] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[9] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[11] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[12] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[13] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[14] Xu MA,Quan'an LI,Xiaotian JING. Influence of Heat Treatment on Microstructure and Corrosion Resistance of Mg-10Gd-2.5Nd-0.5Zr Alloy[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[15] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
No Suggested Reading articles found!