Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 743-751    DOI: 10.11902/1005.4537.2022.131
Current Issue | Archive | Adv Search |
Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica
GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao()
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(11764KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By taking marine Pseudoalteromonas lipolytica (P. lipolytica) wild type strain (WT) and the genetically engineered P. lipolytica mutant strain with hmgA gene deletion (∆hmgA) as model strains, the influence of marine bacteria secreting pyomelanin on the corrosion behavior of 316L stainless steel in marine bacteria culture solutions was studied via electrochemical measurements, scanning electron microscopy (SEM), laser confocal microscopy (CLSM) and X-ray diffraction (XRD). It was proved that WT strain did not cause corrosion of the stainless steel, correspondingly a compact passivation film may form on the steel surface in the medium containing WT. While the ∆hmgA strain will secrete pyomelanin and induce formation of mineralization sites on the stainless-steel surface, thus destroying the formed passivation film and further causing serious pitting corrosion. In bacterial pyomelanin solution, the stainless steel will also be suffered from pitting corrosion, however, a rather intact passivation film can still be formed on the steel surface due to that no bacteria may be involved to the process. In general, this study revealed that the corrosion mechanism of stainless steel in the environments containing pigmented bacteria and the influence of pyomelanin on passivation film formation and pitting development.

Key words:  Pseudoalteromonas lipolytica      pigmented bacteria      bacterial pyomelanin      stainless steel      pitting     
Received:  03 May 2022     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(41976039);National Natural Science Foundation of China(42006039);National Natural Science Foundation of China(51901127);Natural Science Foundation of Shanghai(19ZR1422100)
Corresponding Authors:  LIU Tao     E-mail:  liutao@shmtu.edu.cn
About author:  LIU Tao, E-mail: liutao@shmtu.edu.cn

Cite this article: 

GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 743-751.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.131     OR     https://www.jcscp.org/EN/Y2022/V42/I5/743

Fig.1  Changed with time of marine broths containing WT strain and mutant strain ∆hmgA in the culture cycle: (a) growth curve, (b) pH, (c) concentration of dissolved oxygen value
Fig.2  Macroscopic morphology of stainless-steel samples after immersion for 14 d: (a) abiotic, (b) WT strain, (c) ΔhmgA, (d) pyomelanin solution
Fig.3  CLSM images of stainless steel samples immersed in WT (a-c) and ∆hmgA (d-f) medium for 1 d (a, d), 7 d (b, e) and 14 d (c, f), red and green represent dead and live cells, respectively
Fig.4  Surface biofilm morphology of the 316L stainless steel surface in the abiotic (a, b), WT strain (c, d), ∆hmgA (e, f), pyomelanin media (g, h) after 14 d of immersion
Fig.5  XRD spectra of stainless-steel samples immersed in different solutions for 14 d
Fig.6  Optical profilometry images of the pit morphologies of the 316 L stainless steel in Abiotic (a), WT strain (b), ∆hmgA (c), pyomelanin solution (d) after 14 d of immersion
Fig.7  Potentiodynamic polarization curves of stainless-steel samples immersed in different solutions for 14 d
Solution time / dEcorr / VIcorr / A·cm-2Ep / V
Abiotic-14-0.494.60×10-7-0.20
hmgA-14-0.421.13×10-6---
WT-14-0.517.16×10-7-0.25
Pyomelanin-14-0.198.46×10-7-0.30
Table 1  Potentiodynamic polarization fitting parameters of stainless-steel samples immersed in different solutions for different times
Fig.8  Electrochemical impedance spectroscopy of the 316 L stainless steel immersed in Abiotic (a), WT strain (b), ∆hmgA (c), pyomelanin solution (d) for different times
SolutionTime / dRs / Ω·cm2Y1 / S·sec n ·cm-2nRf / Ω·cm2Y2 / S·sec n ·cm-2nRct / Ω·cm2
Abiotic12.9---------4.0×10-50.93.0×106
34.5---------4.0×10-50.94.8×106
76.4---------4.3×10-50.96.9×106
103.4---------7.5×10-50.93.0×106
145.8---------8.9×10-50.84.8×107
WT14.9---------3.4×10-50.83.1×105
35.3---------2.6×10-50.92.7×105
76.6---------1.6×10-50.93.2×106
109.5---------1.2×10-50.95.2×106
148.5---------4.7×10-50.93.7×107
hmgA13.6---------3.3×10-40.81.8×103
34.5---------6.4×10-40.89.8×102
73.75.2×10-50.88184.0×10-40.81.3×104
101.83.4×10-50.68723.1×10-40.93.5×104
141.92.9×10-50.7714.74.7×10-40.92.8×104
Pyomelanin18.2---------5.7×10-50.95.4×106
32.9---------6.4×10-40.82.7×107
79.5---------8.7×10-40.61.7×107
108.5---------4.7×10-40.91.8×107
148.2---------6.0×10-50.83.5×106
Table 2  Electrochemical impedance fitting parameters of stainless-steel samples immersed in different solutions for different times
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Marciales A, Peralta Y, Haile T, et al. Mechanistic microbiologically influenced corrosion modeling—a review [J]. Corros. Sci., 2019, 146: 99
doi: 10.1016/j.corsci.2018.10.004
3 Geweely N S I. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt [J]. Biodegradation, 2011, 22: 243
doi: 10.1007/s10532-010-9391-7 pmid: 20820884
4 Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
田丰, 白秀琴, 贺小燕 等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
5 Feng H, Li H B, Lu P C, et al. Investigation on microbiologically influenced corrosion behavior of CrCoNi medium-entropy alloy by pseudomonas aeruginosa [J]. Acta Metall. Sin., 2019, 55: 1457
冯浩, 李花兵, 路鹏冲 等. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1457
doi: 10.11900/0412.1961.2019.00030
6 Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiology, 2017, 44: 1699
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
7 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
8 Venil C K, Zakaria Z A, Ahmad W A. Bacterial pigments and their applications [J]. Process Biochem., 2013, 48: 1065
9 Hernandez M E, Kappler A, Newman D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction [J]. Appl. Environ. Microbiol., 2004, 70: 921
doi: 10.1128/AEM.70.2.921-928.2004
10 Turick C E, Tisa L S, Caccavo Jr F. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY [J]. Appl. Environ. Microbiol., 2002, 68: 2436
doi: 10.1128/AEM.68.5.2436-2444.2002
11 Egan S, James S, Holmström C, et al. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata [J]. Environ. Microbiol., 2002, 4: 433
doi: 10.1046/j.1462-2920.2002.00322.x
12 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
13 Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions [J]. Corros. Sci., 2008, 50: 1796
doi: 10.1016/j.corsci.2008.04.005
14 Refaey S A M, Taha F, El-Malak A M A. Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-mercaptobenzimidazole [J]. Int. J. Electrochem. Sci., 2006, 1: 80
15 Albrimi Y A, Eddib A, Douch J, et al. Electrochemical behaviour of AISI 316 austenitic stainless steel in acidic media containing chloride ions [J]. Int. J. Electrochem. Sci., 2011, 6: 4614
16 Haïdopoulos M, Turgeon S, Sarra-Bournet C, et al. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications [J]. J. Mater. Sci. Mater. Med., 2006, 17: 647
doi: 10.1007/s10856-006-9228-4
17 Wang P X, Yu Z C, Li B Y, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas [J]. Microb. Cell Fact., 2015, 14: 11.
doi: 10.1186/s12934-015-0194-8
18 Bosi E, Fondi M, Maida I, et al. Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation [J]. Hydrobiologia, 2015, 761: 85
doi: 10.1007/s10750-015-2396-9
19 Guo N, Zhao Q Y, Hui X R, et al. Enhanced corrosion protection action of biofilms based on endogenous and exogenous bacterial cellulose [J]. Corros. Sci., 2022, 194: 109931
doi: 10.1016/j.corsci.2021.109931
20 Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
21 Zhang L H, Li C J, Pan L, et al. Corrosion behavior of 316L stainless steel in simulated oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 625
张龙华, 李长君, 潘磊 等. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 625
22 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
[1] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[2] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[3] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[4] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[5] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[6] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[7] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[8] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[9] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[10] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[11] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[12] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[13] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[14] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
No Suggested Reading articles found!