|
|
Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃ |
ZHANG Qin1, LIANG Taosha2, WANG Wen2, ZHAO Langlang1, JIANG Yuefeng1( ) |
1.The 404 Company Limited, China National Nuclear Corporation, Lanzhou 732850, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract Nanocrystallization can increase the diffusion rate of alloying elements, such as Cr, Al, and then improve the high-temperature oxidation resistance of metallic alloys due to the presence of high-volume fraction of grain boundaries. Up to now, the studies on the effect of nano-structure on the oxidation behavior of alloys mainly focus on the oxidation kinetics and the structure of oxide scale at steady stage. The microstructure of oxide scale formed on nano-structured alloys during oxidation, especially at the initial stage, is lack of characterization. At the same time, nano-structured alloys are far away from thermodynamic equilibrium state, which inevitably result in the grain coarsening during oxidation process. Therefore, it is necessary to characterize the microstructure of oxide scale on nano-structured alloys to understand the relationship between grain coarsening of alloy and the formation of oxide scale on its surface. In this study, the oxidation behavior of coarse-grained (CG) and nanocrystalline (NC) Ni-12Cr alloys (mass fraction in nominal chemical composition) at 800 ℃ in air were studied. The NC alloy was prepared by severe plastic deformation, and the average grain size is around 42 nm. Focused ion beam (FIB) microscope and scanning transmission electron microscope (STEM) were used to characterize the microstructure and composition distribution of the scale. The results demonstrate that a two-layered scale, external NiO and internal Cr-rich layer, is formed on both of CG and NC alloys after oxidation for 25 s. The scale on CG alloy develops into a multilayered structure, which includes NiO/(NiO+NiCr2O4)/porous Cr2O3/internal oxidation zone after oxidation for 10 min, while the Cr-rich layer on NC alloy crystallizes and forms a protective Cr2O3 scale after oxidation for 2 min. The oxidation kinetics of NC alloy consists of two stages, both of which follow the parabolic law. The parabolic rate constants of the two stages are 1.76×10-13 cm2·s-1 (within 1 h) and 1.58×10-14 cm2·s-1 (1-109 h) respectively, both of which are about 3-4 orders of magnitude lower than that of CG alloy. The study on grain growth kinetics of alloy indicates that the protective chromia scale forms before the significant coarsening of nano-grain. According to Wagner theory with the effective diffusion coefficient, the critical grain size for Ni-12Cr alloy to change from internal oxidation to external oxidation is about 94 nm at 800 ℃.
|
Received: 01 March 2022
|
|
Fund: National Natural Science Foundation of China(52101107);China Postdoctoral Science Foundation(2021M703274);CNNC's 2021Young Talents Scientific Research Project(75) |
Corresponding Authors:
JIANG Yuefeng
E-mail: jiangyfd@mail.ustc.edu.cn
|
About author: JIANG Yuefeng, E-mail: jiangyfd@mail.ustc.edu.cn
|
1 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier, 2008: 185
|
2 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
3 |
Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales [J]. Oxid. Met., 1997, 48: 215
doi: 10.1007/BF01670500
|
4 |
Hart E W. On the role of dislocations in bulk diffusion [J]. Acta Metall., 1957, 5: 597
doi: 10.1016/0001-6160(57)90127-X
|
5 |
Merz M D. The oxidation resistance of fine-grained sputter-deposited 304 stainless steel [J]. Metall. Mater. Trans., 1979, 10A: 71
|
6 |
Baer D R, Merz M D. Differences in oxides on large-and small-grained 304 stainless steel [J]. Metall. Mater. Trans., 1980, 11A: 1973
|
7 |
Yurek G J, Eisen D, Garratt-Reed A. Oxidation behavior of a fine-grained rapidly solidified 18-8 stainless steel [J]. Metall. Mater. Trans., 1982, 13A: 473
|
8 |
Wang F H. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating [J]. Oxid. Met., 1997, 47: 247
doi: 10.1007/BF01668513
|
9 |
Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
doi: 10.1016/S1359-6454(97)00346-7
|
10 |
Fu G Y, Liu Q, Long Y Y, et al. Effect of grain-size reduction on oxidation behavior of Fe-Cr and Ni-Cr alloys [J]. Corros. Sci. Prot. Technol., 2005, 17: 384
|
|
付广艳, 刘群, 龙媛媛 等. 晶粒细化对Fe-Cr、Ni-Cr合金氧化行为的影响 [J]. 腐蚀科学与防护技术, 2005, 17: 384
|
11 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review [J]. Corros. Commun., 2021, 1: 58
doi: 10.1016/j.corcom.2021.06.003
|
12 |
Kursumovic A, Hühne R, Tomov R, et al. Investigation of the growth and stability of (100)[001] NiO films grown by thermal oxidation of textured (100)[001] Ni tapes for coated conductor applications during oxygen exposure from 700 to 1400 ℃ [J]. Acta Mater., 2003, 51: 3759
doi: 10.1016/S1359-6454(03)00190-3
|
13 |
Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/B9NR00118B
|
14 |
Lu K, Zhou F. Recent research progress on nanocrystalline materials [J]. Acta Metall. Sin., 1997, 33: 99
|
|
卢柯, 周飞. 纳米晶体材料的研究现状 [J]. 金属学报, 1997, 33: 99
|
15 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
16 |
Xu W, Zhang B, Li X Y, et al. Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys [J]. Science, 2021, 373: 683
doi: 10.1126/science.abh0700
pmid: 34353952
|
17 |
Liu Z Y, Gao W, Dahm K, et al. The effect of coating grain size on the selective oxidation behaviour of Ni-Cr-Al alloy [J]. Scr. Mater., 1997, 37: 1551
doi: 10.1016/S1359-6462(97)00291-1
|
18 |
Quan C, He Y D, Zhang J. High temperature oxidation behavior of a novel Ni-Cr binary alloy coating prepared by cathode plasma electrolytic deposition [J]. Surf. Coat. Technol., 2016, 292: 11
doi: 10.1016/j.surfcoat.2016.03.012
|
19 |
Calvarin G, Molins R, Huntz A M. Oxidation mechanism of Ni-20Cr foils and its relation to the oxide-scale microstructure [J]. Oxid. Met., 2000, 53: 25
doi: 10.1023/A:1004578513020
|
20 |
Yu X X, Gulec A, Andolina C M, et al. In situ observations of early stage oxidation of Ni-Cr and Ni-Cr-Mo alloys [J]. Corrosion, 2018, 74: 939
doi: 10.5006/2807
|
21 |
Wagner C. Types of reactions in the oxidation of alloys [J]. J. Electrochem. Soc., 1959, 63: 771
|
22 |
Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
doi: 10.1016/0001-6160(61)90103-1
|
23 |
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
|
24 |
Atkinson H V. A review of the role of short-circuit diffusion in the oxidation of nickel, chromium, and nickel-chromium alloys [J]. Oxid. Met., 1985, 24: 177
doi: 10.1007/BF00664231
|
25 |
Xie Y, Huang Y C, Li Y H, et al. A novel method to promote selective oxidation of Ni-Cr alloys: Surface spreading α-Al2O3 nanoparticles [J]. Corros. Sci., 2021, 190: 109717
doi: 10.1016/j.corsci.2021.109717
|
26 |
Andreev Y Y, Shumkin A A. A new theoretical approach to the thermodynamic calculation of high-temperature oxidation of Ni-Cr alloys [J]. Prot. Met., 2006, 42: 221
doi: 10.1134/S0033173206030039
|
27 |
Wang Z B, Lu K. Diffusion and surface alloying of gradient nanostructured metals [J]. Beilstein J. Nanotechnol., 2017, 8: 547
doi: 10.3762/bjnano.8.59
|
28 |
Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
|
|
彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
doi: 10.3724/SP.J.1037.2013.00604
|
29 |
Balluffi R W. Grain boundary diffusion mechanisms in metals [J]. Metall. Mater. Trans., 1982, 13B: 527
|
30 |
Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
|
31 |
Douglass D L, Armijo J S. The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr [J]. Oxid. Met., 1970, 2: 207
doi: 10.1007/BF00603657
|
32 |
Hampikian J M, Potter D I. The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. II. Oxidation of yttrium implanted Ni-20Cr [J]. Oxid. Met., 1992, 38: 139
doi: 10.1007/BF00665049
|
33 |
Halem Z, Halem N, Abrudeanu M, et al. Transport properties of Al or Cr-doped nickel oxide relevant to the thermal oxidation of dilute Ni-Al and Ni-Cr alloys [J]. Solid State Ionics, 2016, 297: 13
doi: 10.1016/j.ssi.2016.09.023
|
34 |
Wood G C, Hodgkiess T. Mechanism of oxidation of dilute nickel-chromium alloys [J]. Nature, 1966, 211: 1358
doi: 10.1038/2111358a0
|
35 |
Zhao Y, Yang G X, Yuan C, et al. Isothermal oxidation behavior of a cast Ni-base superalloy K447 [J]. Corros. Sci. Prot. Technol., 2007, 19: 1
|
|
赵越, 杨功显, 袁超 等. 铸造镍基高温合金K447的高温氧化行为 [J]. 腐蚀科学与防护技术, 2007, 19: 1
|
36 |
Zhang J, Huang J P, Shang G F, et al. Effect of surface roughness on oxidation behavior of Ni-Cr-Al alloy at high temperatures [J]. Corros. Sci. Prot. Technol., 2016, 28: 531
|
|
张俊, 黄嘉鹏, 尚根峰 等. 不同表面粗糙度镍铬铝合金的高温氧化行为 [J]. 腐蚀科学与防护技术, 2016, 28: 531
|
37 |
Quadakkers W J, Naumenko D, Wessel E, et al. Growth rates of alumina scales on Fe-Cr-Al alloys [J]. Oxid. Met., 2004, 61: 17
doi: 10.1023/B:OXID.0000016274.78642.ae
|
38 |
Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr [J]. Oxid. Met., 1989, 31: 275
doi: 10.1007/BF00846690
|
39 |
Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 82
|
|
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 82
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|