|
|
Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy |
XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract The pitting corrosion behavior of ultra-fine lamellated (UFL) Al-4%Cu alloy prepared by cold rolling at room temperature has been studied by means of scanning electron microscope (SEM), transmission electron microscope (TEM), microhardness tester and potentiodynamic polarization measurement aiming to understand the effect of element segregation and precipitates at grain boundaries on pitting corrosion potential. The result shows that the average lamellar spacing of cold rolled Al-Cu alloy is 159 nm and there exists obvious segregation of Cu at boundaries. The pitting corrosion potential of the cold rolled Al-Cu is found to be similar to that of the coarse grain ones. After aging treatment, the pitting corrosion potential decreases obviously because of precipitation of second phases at grain boundaries. These results indicate that the element segregation at grain boundaries has no significant effect on the pitting corrosion behavior of Al-Cu alloy, while the precipitation of second phases rich in Cu can have an obvious effect on the pitting corrosion behavior.
|
Received: 05 March 2021
|
|
Fund: National Key Research and Development Program of China(2017YFB0702103) |
Corresponding Authors:
ZHANG Bo
E-mail: bxz011@imr.ac.cn
|
About author: ZHANG Bo, E-mail: bxz011@imr.ac.cn
|
1 |
Davis J R. Corrosion of Aluminum and Aluminum Alloys [M]. Ohio: ASM International, 1999
|
2 |
Wu S H, Zhang P, Shao D, et al. Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al-Cu alloys [J]. Mater. Sci. Eng., 2018, 721A: 200
|
3 |
Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152: B140
|
4 |
Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
|
5 |
Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
|
6 |
Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
|
7 |
Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros. Sci., 2012, 57: 209
|
8 |
Shankar M R, Chandrasekar S, King A H, et al. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining [J]. Acta Mater., 2005, 53: 4781
|
9 |
Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
|
10 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
11 |
Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
|
12 |
Li N, Li Y, Wang S G, et al. Corrosion behavior of nanocrystallized bulk 304 stainless steel I. The research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 80
|
|
李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究I.钝化膜耐氯离子侵蚀能力 [J]. 中国腐蚀与防护学报, 2007, 27: 80
|
13 |
Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
|
|
岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
|
14 |
Huang Y, Robson J D, Prangnell P B. The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al-4wt.% Cu alloy [J]. Acta Mater., 2010, 58: 1643
|
15 |
Yu S R, He Y N, Li S X, et al. Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 70
|
|
俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 70
|
16 |
Xu W, Liu X C, Li X Y, et al. Deformation induced grain boundary segregation in nanolaminated Al-Cu alloy [J]. Acta Mater., 2020, 182: 207
|
17 |
Akiyama E, Zhang Z G, Watanabe Y, et al. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys [J]. J. Solid State Electrochem., 2009, 13: 277
|
18 |
Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
|
|
张欣, 杨光恒, 王泽华等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
|
19 |
Valiev R Z, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation [J]. JOM, 2006, 58(4): 33
|
20 |
Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
|
21 |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
|
22 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
|
23 |
Curry J F, Babuska T F, Furnish T A, et al. Achieving ultralow wear with stable nanocrystalline metals [J]. Adv. Mater., 2018, 30: 1802026
|
24 |
Shan G B, Chen Y Z, Li Y J, et al. High temperature creep resistance of a thermally stable nanocrystalline Fe-5at.%Zr steel [J]. Scr. Mater., 2020, 179: 1
|
25 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
|
26 |
Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
27 |
Petch N. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
28 |
Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
|
29 |
Ralston K D, Birbilis N, Weyland M, et al. The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu-Mg alloys [J]. Acta Mater., 2010, 58: 5941
|
30 |
Wang J, Zhang B, Wu B, et al. Size-dependent role of S phase in pitting initiation of 2024Al alloy [J]. Corros. Sci., 2016, 105: 183
|
31 |
Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|