Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 274-280    DOI: 10.11902/1005.4537.2021.041
Current Issue | Archive | Adv Search |
Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy
XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3725KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior of ultra-fine lamellated (UFL) Al-4%Cu alloy prepared by cold rolling at room temperature has been studied by means of scanning electron microscope (SEM), transmission electron microscope (TEM), microhardness tester and potentiodynamic polarization measurement aiming to understand the effect of element segregation and precipitates at grain boundaries on pitting corrosion potential. The result shows that the average lamellar spacing of cold rolled Al-Cu alloy is 159 nm and there exists obvious segregation of Cu at boundaries. The pitting corrosion potential of the cold rolled Al-Cu is found to be similar to that of the coarse grain ones. After aging treatment, the pitting corrosion potential decreases obviously because of precipitation of second phases at grain boundaries. These results indicate that the element segregation at grain boundaries has no significant effect on the pitting corrosion behavior of Al-Cu alloy, while the precipitation of second phases rich in Cu can have an obvious effect on the pitting corrosion behavior.

Key words:  Ultra-fine lamellar      element segregation      precipitates      pitting corrosion     
Received:  05 March 2021     
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2017YFB0702103)
Corresponding Authors:  ZHANG Bo     E-mail:  bxz011@imr.ac.cn
About author:  ZHANG Bo, E-mail: bxz011@imr.ac.cn

Cite this article: 

XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 274-280.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.041     OR     https://www.jcscp.org/EN/Y2022/V42/I2/274

Fig.1  Characterizations of UFL structures for the Al-4%Cu alloy: (a) TEM micrograph, (b) related statistical size distribution; (c, d) elemental mappings of red rectangular region marked in Fig.1a, (e) EDS line-scan of Al and Cu along the white line in Fig.1d, there is obvious Cu segre-gation at the lamellar boundary
Fig.2  Variation of Vickers hardness with annealing temperature
Fig.3  TEM micrograph (a) and HAADF-STEM image (b) of cold rolled Al-4Cu annealed at 150 ℃ for 1 h (black arrows indicate θ-Al2Cu while white arrows indicate metastable phase θ')
Fig.4  Variation of Vickers hardness of clod UFL Al-4%Cu at 80 ℃ with aging time (a), SEM-ECC images of UFL Al-4%Cu annealed for 0 h (b), 12 h (c) and 72 h (d)
Fig.5  Potentiodynamic polarization curves of CG, as deformed and sensitized Al-4%Cu samples in 0.6 mol/L NaCl solution (pH7) (a), corrosion morphology of CG (b), as deformed (c) and sensitied Al-4Cu sample (d) after immersed for 72 h (b~d)
Fig.6  Pitting corrosion morphology of sensitized UFL Al-4%Cu after immersed in NaCl solution (a), Al (b), Cu (c) and O (d) element mappings in the rectangular region marked in Fig.6a
1 Davis J R. Corrosion of Aluminum and Aluminum Alloys [M]. Ohio: ASM International, 1999
2 Wu S H, Zhang P, Shao D, et al. Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al-Cu alloys [J]. Mater. Sci. Eng., 2018, 721A: 200
3 Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152: B140
4 Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
5 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
6 Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
7 Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros. Sci., 2012, 57: 209
8 Shankar M R, Chandrasekar S, King A H, et al. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining [J]. Acta Mater., 2005, 53: 4781
9 Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
10 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
11 Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
12 Li N, Li Y, Wang S G, et al. Corrosion behavior of nanocrystallized bulk 304 stainless steel I. The research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 80
李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究I.钝化膜耐氯离子侵蚀能力 [J]. 中国腐蚀与防护学报, 2007, 27: 80
13 Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
14 Huang Y, Robson J D, Prangnell P B. The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al-4wt.% Cu alloy [J]. Acta Mater., 2010, 58: 1643
15 Yu S R, He Y N, Li S X, et al. Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 70
俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 70
16 Xu W, Liu X C, Li X Y, et al. Deformation induced grain boundary segregation in nanolaminated Al-Cu alloy [J]. Acta Mater., 2020, 182: 207
17 Akiyama E, Zhang Z G, Watanabe Y, et al. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys [J]. J. Solid State Electrochem., 2009, 13: 277
18 Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
张欣, 杨光恒, 王泽华等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
19 Valiev R Z, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation [J]. JOM, 2006, 58(4): 33
20 Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
21 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
22 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
23 Curry J F, Babuska T F, Furnish T A, et al. Achieving ultralow wear with stable nanocrystalline metals [J]. Adv. Mater., 2018, 30: 1802026
24 Shan G B, Chen Y Z, Li Y J, et al. High temperature creep resistance of a thermally stable nanocrystalline Fe-5at.%Zr steel [J]. Scr. Mater., 2020, 179: 1
25 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
26 Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
27 Petch N. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
28 Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
29 Ralston K D, Birbilis N, Weyland M, et al. The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu-Mg alloys [J]. Acta Mater., 2010, 58: 5941
30 Wang J, Zhang B, Wu B, et al. Size-dependent role of S phase in pitting initiation of 2024Al alloy [J]. Corros. Sci., 2016, 105: 183
31 Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
[1] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[2] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[3] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[4] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[5] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[9] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[12] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[13] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
No Suggested Reading articles found!