Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 892-898    DOI: 10.11902/1005.4537.2020.162
Current Issue | Archive | Adv Search |
Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water
ZHANG Jie(), QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
Download:  HTML  PDF(7111KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion characteristics of nickel-based alloys (Incoloy800, 825 and 625) in sub/supercritical water systems with the presence of sulfides were investigated using supercritical batch reactor. The surface morphology, structure and phase composition of corrosion products were characterized. The difference in corrosion behavior for the three alloys were assessed in terms of the effect of temperature and elemental composition of alloys. It is found that the nickel-based alloy with lower Ni/Cr ratio had better corrosion resistance. For Incoloy800 alloy with Ni/Cr ratio of 1.5, the Ni and Cr mainly converted into dense spinel phase NiCrO4 which could protect the substrate from corrosion. With regarding to Incoloy825 and 625 alloys, whose Ni/Cr ratios respectively were 2 and 3, the corrosion scale of Incoloy825 alloy in supercritical water was 4.26 μm in thickness, while duplex scales with outer portion of metal sulfide and inner portion of metal oxides were formed for Inconel625 alloy. However, surplus Ni generated loose NiS phase, giving rise to significant corrosion for these two alloys.

Key words:  supercritical water      subcritical water      nickel based alloy      corrosion     
Received:  14 September 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(22078260)
Corresponding Authors:  ZHANG Jie     E-mail:  jiezhang@xaut.edu.cn
About author:  ZHANG Jie, E-mail: jiezhang@xaut.edu.cn

Cite this article: 

ZHANG Jie, QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi. Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 892-898.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.162     OR     https://www.jcscp.org/EN/Y2021/V41/I6/892

SampleCSiMnPSCrFeAlMoNbNi
Incoloy800≤0.1≤1.0≤1.5≤0.03≤0.0221.043.450.4------Bal.
Incoloy825≤0.03≤0.5≤1.0------21.527.57≤0.23.0---Bal.
Inconel6250.030.10.30.0070.00221.84.00.28.73.4Bal.
Table 1  Elemental compositions of three alloys (mass fraction / %)
Fig.1  Schematic diagram of the batch supercritical water reactor (1 electrical heater; 2 reactor, 3 reactor cap, 4 temperature controller, 5 thermocouple, 6 safety valve, 7 pressure gauge, 8 bolt, 9 sample hook, 10 samples)
Fig.2  Surface morphologies of Incoloy800 alloy (a, d), Incoloy825 alloy (b, e) and Incoloy625 alloy (c, f) after exposure to subcritical water with sulfide of 5000 mg/L at 25 MPa, 350 ℃ for 80 h
SampleFeNiCrS
Incoloy800 alloy043.4532.521.00
117.3126.4813.6314.23
236.3019.7120.461.27
Incoloy800 alloy027.5742.021.50
16.8213.9812.3544.27
215.223.353.6328.67
Incoloy800 alloy04.0061.1621.800
10.6827.4610.4110.67
20.0611.098.6429.75
Table 2  EDS elemental analysis for nickel-based alloy specimens before and after corrosion experiments
Fig.3  Surface morphologies of Incoloy800 alloy (a, d), Incoloy825 alloy (b, e) and Incoloy625 alloy (c, f) after exposure to supercritical water with sulfide of 5000 mg/L at 25 MPa, 520 ℃ for 80 h
Fig.4  Cross-sectional back-scattering electron image along with EDS line-scan profiles of the corrosion layer on Incoloy800 alloy (a, d), Incoloy825 alloy (b, e) and Incoloy625 alloy (c, f) exposed to supercritical water with 5000 mg/L sulfide at 25 MPa, 520 ℃ for 80 h
Fig.5  XRD patterns for the surface of nickel-based alloy specimens after corrosion experiment in subcritical water (25 MPa, 350 ℃)
Fig.6  XRD patterns of scales formed on Incoloy800 alloy (a), Incoloy825 alloy (b), Incoloy625 alloy (c) after corrosion experi-ment in supercritical water (25 MPa, 520 ℃)
1 Ge Z W, Guo L J, Jin H. Catalytic supercritical water gasification mechanism of coal [J]. Int. J. Hydrog. Energy, 2020, 45: 9504
2 Ge Z W, Guo S H, Ren C Y F, et al. Non-catalytic supercritical water partial oxidation mechanism of coal [J]. Int. J. Hydrog. Energy, 2020, 45: 21178
3 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
4 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Characterization of oxide layer and micro-crack initiation in alloy 316L stainless steel after 20,000h exposure to supercritical water at 500 °C [J]. Mater. Charact., 2017, 131: 532
5 Yang J Q, Wang S Z, Li Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment [J]. Corros. Sci., 2020, 167: 108493
6 Shen C, Du D H, Sun Y, et al. Corrosion behavior of nickel based alloy 825 in supercritical water [J]. Atom. Energy Sci. Technol., 2014, 48: 1660
沈朝, 杜东海, 孙耀等. 镍基合金825在超临界水中的腐蚀性能研究 [J]. 原子能科学技术, 2014, 48: 1660
7 Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
8 Chang K S, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
9 Chang K H, Chen S M, Yeh T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 ℃ [J]. Corros. Sci., 2014, 81: 21
10 Meng N, Jiang D D, Liu Y, et al. Sulfur transformation in coal during supercritical water gasification [J]. Fuel, 2016, 186: 394
11 Liu S K, Li L H, Guo L J, et al. Sulfur transformation characteristics and mechanisms during hydrogen production by coal gasification in supercritical water [J]. Energy Fuels, 2017, 31: 12046
12 Reddy S N, Nanda S, Kozinski J A. Superc ritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery [J]. Chem. Eng. Res. Des., 2016, 113: 17
13 Li Y H, Wang S Z, Yang J Q, et al. Corrosion characteristics of a nickel-base alloy C-276 in harsh environments [J]. Int. J. Hydrog. Energy, 2017, 42: 19829
14 Fulger M, Ohai D, Mihalache M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions [J]. J. Nucl. Mater., 2009, 385: 288
15 Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 °C [J]. Corros. Sci., 2016, 106: 188
16 Choudhry K I, Guzonas D A, Kallikragas D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water [J]. Corros. Sci., 2016, 111: 574
17 Dieckmann R, Mason T O, Hodge J D, et al. Defects and cation diffusion in magnetite (III.) tracerdiffusion of foreign tracer cations as a function of temperature and oxygen potential [J]. Bericht. Bunsengesell. Physikal. Chem., 1978, 82: 778
18 LaBranche M, Garratt-Reed A, Yurek G. Early stages of the oxidation of chromium in H2-H2O-H2S  gas mixtures [J]. J. Electrochem. Soc., 1983, 130: 2405
19 Lee J C, Kim M J, Lee D B. High-temperature corrosion of aluminized and chromized Fe-25.8%Cr-19.5%Ni alloys in N2/H2S/H2O-mixed gases [J]. Oxid. Met., 2014, 81: 617
20 Yang J Q, Wang S Z, Li Y H, et al. Oxidation-sulfidation attacks on alloy 600 in supercritical water containing organic sulfides [J]. Mater. Lett., 2020, 263: 127218
[1] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[2] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[3] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[5] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[6] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[7] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[8] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[9] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[10] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[11] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[12] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[13] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[14] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[15] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
No Suggested Reading articles found!