Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 429-438    DOI: 10.11902/1005.4537.2020.133
Current Issue | Archive | Adv Search |
Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines
LI Guangquan1, LI Guangfang2, WANG Junqiang3, ZHANG Tiansui2, ZHANG Fei2, JIANG Ximin1, LIU Hongfang2()
1.Sinopec Oilfield Service Corporation (SSC), Beijing 100020, China
2.Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3.China Special Equipment Inspection and Research Institute (CSEI), Beijing 100029, China
Download:  HTML  PDF(2428KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the most important method for massive and long haul transportation of oil and gas resources, offshore pipelines undertake the significant tasks of oil and gas gathering and transportation, namely the “lifeline” of offshore oil and gas engineering. However, microbiologically influenced corrosion in the marine environment is one of the important causes of corrosion damage to offshore pipelines. Based on the service environment of marine oil and gas pipelines, this paper reviews the research progress of microbiologically influenced corrosion failure of coastal pipelines in the marine environment, focusing on the regularity and mechanism of corrosion induced by sulfate reducing bacteria and iron oxidizing bacteria, which are representative bacteria for the corrosion occurrence in the marine environment. Also, the corresponding protection methods of pipelines are summarized, which provides reference for the research on microbiologically influenced corrosion damage and the corrosion control engineering of pipelines operated in marine environment.

Key words:  offshore pipeline      microbiologically influenced corrosion      corrosion protection     
Received:  26 July 2020     
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2016YFC0802301)
Corresponding Authors:  LIU Hongfang     E-mail:  liuhf@hust.edu.cn
About author:  LIU Hongfang, E-mail: liuhf@hust.edu.cn

Cite this article: 

LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 429-438.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.133     OR     https://www.jcscp.org/EN/Y2021/V41/I4/429

Fig.1  Illustration of the mechanism of the biocatalytic cathodic sulfate reduction theory[28,29]
Fig.2  Three electron transfer pathways in MIC by sessile SRB cells[16]
Fig.3  Iron reaction pathways of pitting potentially caused by oxygen and Fe(OH)3 precipitation (a) and crevice corrosion in the presence of IOB (b)[36]
Fig.4  Formation propagation mechanism of pitting corrosion in the mixture of SRB and IOB: (a) initial period, (b) formation of biofilm, (c) formation and propagation of pitting corrosion
1 Ma S D, Li W H, Sun H Y, et al. The biological control of ocean corrosion [J]. Total Corros. Control, 2006, 20(3): 5
马士德, 李伟华, 孙虎元等. 海洋腐蚀的生物控制 [J]. 全面腐蚀控制, 2006, 20(3): 5
2 Edyvean R G J. Biodeterioration problems of North Sea oil and gas production—A review [J]. Int. Biodeterior., 1987, 23: 199
3 Azis P K A, Al-Tisan I, Sasikumar N. Biofouling potential and environmental factors of seawater at a desalination plant intake [J]. Desalination, 2001, 135: 69
4 Yan T, Yan W, Dong Y, et al. Marine fouling of offshore installations in the northern Beibu Gulf of China [J]. Int. Biodeterior. Biodegrad., 2006, 58: 99
5 Heitz E, Flemming H C, Sand W. Microbially Influenced Corrosion of Materials [M]. Berlin: Springer-Verlag, 1996
6 Ma C, Chen C G, Jiang X B, et al. Distribution characteristics of marine bacteria in the China seas [J]. Med. J. Chin. PLA, 2012, 37: 909
马聪, 陈昌国, 蒋学兵等. 中国海域海洋细菌分布特征分析 [J]. 解放军医学杂志, 2012, 37: 909
7 Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
8 Duan L N, Liu Q Y, Jia S J, et al. Microstructure characteristics and strength-toughness of X100 pipeline steel [J]. Chin. J. Mater. Res., 2012, 26: 443
段琳娜, 刘清友, 贾书君等. X100级管线钢的组织和强韧性 [J]. 材料研究学报, 2012, 26: 443
9 Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria [J]. Corros. Sci., 2018, 144: 237
10 Dong S, Bai X Q, Yuan C Q. Analysis of induced corrosion by fouling organisms on offshore platform and its research progress [J]. Mater. Prot., 2018, 51: 116
董硕, 白秀琴, 袁成清. 海洋平台污损生物诱导腐蚀分析及其研究进展 [J]. 材料保护, 2018, 51: 116
11 Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
12 Li H B, Zhou E Z, Ren Y B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
13 Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
14 Liu F L. Effect of sulphate reducing bacteria on corrosion of Zn, Al sacrificial anode materials in marine sediment [D]. Chongqing: Chongqing University, 2010
刘奉令. 海泥中硫酸盐还原菌对锌、铝牺牲阳极材料的腐蚀影响研究 [D]. 重庆: 重庆大学, 2010
15 Liu F L, Zhang S T, Zhang J, et al. Effects of SRB on corrosion of pure zinc anode in marine sediment [J]. Chin. J. Mater. Res., 2010, 24: 411
刘奉令, 张胜涛, 张杰等. 海泥中SRB对纯锌阳极腐蚀行为的影响 [J]. 材料研究学报, 2010, 24: 411
16 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
17 Videla H A, Swords C, Edyvean R G J. Features of SRB-induced corrosion of carbon steel in marine environments [A].
Dean S, Delgadillo G, Bushman J. Marine Corrosion in Tropical Environments [M]. West Conshohocken, PA: ASTM International, 2000: 270
18 Craig B D, McNeil M B, Little B J. Discussion of “mackinawite formation during microbial corrosion” [J]. Corrosion, 1991, 47: 329
19 Liu H F, Liu T, Zheng B J, et al. Influence of EPS's activity on 13Cr stainless steel's pitting sensitivity [J]. J. Huazhong Univ. Sci. Techno. (Nat. Sci. Ed.), 2009, 37: 122
刘宏芳, 刘涛, 郑碧娟等. EPS活性对13Cr钢钝化膜点蚀敏感性的影响 [J]. 华中科技大学学报 (自然科学版), 2009, 37: 122
20 Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
21 Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeterior. Biodegrad., 2013, 80: 29
22 Chan K Y, Xu L C, Fang H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria [J]. Environ. Sci. Technol., 2002, 36: 1720
23 Jin J T, Guan Y T. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes [J]. Bioresour. Technol., 2014, 169: 387
24 Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
25 Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
26 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
27 Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
28 Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
29 Gu T Y. New Understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: 1
30 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
31 Chen Y J, Howdyshell R, Howdyshell S, et al. Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness [J]. Corrosion, 2014, 70: 767
32 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
33 Torres C I, Marcus A K, Lee H S, et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria [J]. FEMS Microbiol. Rev., 2010, 34: 3
34 Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098
35 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
36 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
37 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
38 Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
39 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
40 Hehemann R F. Stress corrosion cracking of stainless steels [J]. Metall. Trans., 1985, 16A: 1909
41 Xiong F P, Wang J L, Ahmed A F, et al. Research progress of sulfate-reducing bacteria induced SCC [J]. Corros. Sci. Prot. Technol., 2018, 30: 213
熊福平, 王军磊, Ahmed A F等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 213
42 Liu Q, Li Z, Liu Z Y, et al. Effects of H2S/HS- on stress corrosion cracking behavior of X100 pipeline steel under simulated sulfate-reducing bacteria metabolite conditions [J]. J. Mater. Eng. Perform., 2017, 26: 2763
43 Li X, Xie F, Wang D, et al. Effect of residual and external stress on corrosion behaviour of X80 pipeline steel in sulphate-reducing bacteria environment [J]. Eng. Fail. Anal., 2018, 91: 275
44 Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
45 Xie F, Li X, Wang D, et al. Synergistic effect of sulphate-reducing bacteria and external tensile stress on the corrosion behaviour of X80 pipeline steel in neutral soil environment [J]. Eng. Fail. Anal., 2018, 91: 382
46 Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2001, 26: 515
47 Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
48 Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716
49 Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels [J]. Corros. Sci., 1997, 39: 1791
50 He T, Jańczewski D, Jana S, et al. Efficient and robust coatings using poly (2-methyl-2-oxazoline) and its copolymers for marine and bacterial fouling prevention [J]. J. Polym. Sci., 2016, 54A: 275
51 Banerjee I, Pangule R C, Kane R S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms [J]. Adv. Mater., 2011, 23: 690
52 Liu J H, Qian S Q. Marine bioadhesion and defenses [J]. Corros. Prot., 2010, 31: 78
刘继华, 钱士强. 海洋生物附着及其防护技术 [J]. 腐蚀与防护, 2010, 31: 78
53 Selim M S, Shenashen M A, El-Safty S A, et al. Recent progress in marine foul-release polymeric nanocomposite coatings [J]. Prog. Mater. Sci., 2017, 87: 1
54 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
55 Guan F, Duan J, Zhai X, et al. Interaction between sulfate-reducing bacteria and aluminum alloys-Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
56 Liao H X, Qi G T, Yu K X. Research on sacrificing anode of high-temperature Al alloy containing rare earth and application [J]. Corros. Prot. Petrochem. Ind., 2004, 21(4): 19
廖海星, 齐公台, 喻克雄. 含稀土高温铝合金牺牲阳极的研究与应用 [J]. 石油化工腐蚀与防护, 2004, 21(4): 19
57 Sun Y L, Wang N, Zhou Y, et al. Electrochemical performance evaluation of high temperature sacrificial anode under well environment [J]. Hot Work. Technol., 2017, 46(14): 99
孙雨来, 王楠, 周勇等. 油井环境中高温牺牲阳极的电化学性能评价 [J]. 热加工工艺, 2017, 46(14): 99
58 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization [J]. PLoS One, 2016, 11: e0162315
59 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1
60 Wei Y L, Tian Y Q, Wang Y H, et al. Study on corrosion inhibition of compound corrosion inhibitor of molybdate in seawater [J]. Adv. Mater. Res., 2012, 581/582: 755
61 Gowri S, Sathiyabama J, Rajendran S. Corrosion inhibition effect of carbon steel in sea water by L-arginine-Zn2+ system [J]. Int. J. Chem. Eng., 2014, 2014: 607209
62 Kaskah S E, Pfeiffer M, Klock H, et al. Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors [J]. Surf. Interfaces, 2017, 9: 70
63 Ma X M, Qian B, Zhang J, et al. The inhibition effect of polyaspartic acid and its mixed inhibitor on mild steel corrosion in seawater wet/dry cyclic conditions [J]. Int. J. Electrochem. Sci., 2016, 11: 3024
64 Liu F, Zhang L, Yan X, et al. Effect of diesel on corrosion inhibitors and application of bio-enzyme corrosion inhibitors in the laboratory cooling water system [J]. Corros. Sci., 2015, 93: 293
65 Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
[1] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[2] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[3] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[4] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[8] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[9] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[10] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[11] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[12] Fangming ZHANG,Zhixiang ZENG,Gang WANG,Junjun CHEN,Yong XU,Liping WANG. Fabrication and Anti-corrosion Performance of Super-hydrophobic Surface Film on Q235 Steel Substrate[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[13] Chao QIAN,Hong YUN,Zhiguo ZHANG,Qunjie XU. Anticorrosive Performance of Nano ZnS Reinforced Polyaniline Coatings on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
[14] DU Bin, ZHOU Shisheng, LI Min, MA Liping. Progress in Research and Development for Surface Modification of Aluminum Pigments and Related Techniques[J]. 中国腐蚀与防护学报, 2014, 34(5): 410-418.
[15] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
No Suggested Reading articles found!