Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 251-258    DOI: 10.11902/1005.4537.2019.069
Current Issue | Archive | Adv Search |
Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy
CAO Jingyi1,2, FANG Zhigang1, CHEN Jinhui3, CHEN Zhixiong3, YIN Wenchang1, YANG Yange1,2,4, ZHANG Wei4()
1 Unit 92228, People's Liberation Army, Beijing 100072, China
2 Postdoctoral Research Station of Naval Research Academy, Beijing 100073, China
3 Fujian LongXi Bearing (Group) Corp. , LTD, Zhangzhou 363000, China
4 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(5693KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Marine Al-alloy 5083 owns low density, good weldability and high hardness, but it is easily suffered from pitting corrosion in sea water due to the effect of Cl-. Micro-arc oxidation (MAO) is an effective way to improve the corrosion resistance of Al-alloy. In the present study the electrolyte formula was optimized via response surface methodology so that to acquire a novel MAO coating on Al-alloy 5083, which composed of merely a dense layer. The prepare MAO coating was then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-hardness meter and dynamic polarization technology in terms of microstructure, micro-hardness and corrosion resistance. Results showed that in comparison with the coating prepared with the ordinary electrolyte, the thickness of the MAO coating increases from 30 μm to 90 μm, size of the sintered particles on MAO coating grown from 10 μm to 50 μm, and the thickness of the dense layer increased from 20 μm to 70 μm, accompanied by the increase of the percentage of α-Al2O3 in the MAO coating as well. The hardness of the polished MAO coating increased from 900 HV to 1500 HV. Polarization curve and salt frog test results also found that with the increasing of micro-arc oxidation time, the corrosion current density of MAO coating was gradually decreased, while its passivation ability was enhanced. Therefore, corrosion resistance of Al-alloy 5083 was increased substantially in the presence of the MAO coating composed merely of a thick dense layer.

Key words:  aluminum alloy      micro-arc oxidation      single dense layer      corrosion resistance     
Received:  01 June 2019     
ZTFLH:  TG174  
Corresponding Authors:  ZHANG Wei     E-mail:  weizhang@imr.ac.cn

Cite this article: 

CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 251-258.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.069     OR     https://www.jcscp.org/EN/Y2020/V40/I3/251

Solution / g·L-1Level
-10+1
Na2SiO3203550
Na2C2O451015
NaF258
Table 1  Experimental variables and levels
RunFactorZ / Ω·cm2Icorr / μA·cm-2P / %
ABC
1-1105.82×1060.48338.7
2-10-11.82×1060.75933.8
30-1-12.24×1060.61329.1
4+1-109.47×1070.0117.7
50002.40×1080.0032.4
60+1+11.84×1070.62829.3
7-10+12.23×1080.0043.2
8+1+103.26×1080.0033.9
9+10-14.20×1060.34927.4
100001.83×1060.62531.4
110-1+12.83×1060.44327.7
12+10+15.12×1060.31622.3
130+1-19.59×1060.03011.7
14-1-103.18×1070.0678.8
150000.90×1060.83542.2
Table 2  Experiment design and the corresponding results
Fig.1  Three dimensional analysis of MAO film resistance: (a) variation with Na2C2O4 and Na2SiO3 concentration (NaF concentration is 5 g/L); (b) variation with NaF and Na2SiO3 concentration (Na2C2O4 concentration is 10 g/L); (c) variation with NaF and Na2C2O4 concentration (Na2SiO3 concentration is 35 g/L)
Fig.2  Three dimensional analysis of corrosion current: (a) variation with Na2C2O4 and Na2SiO3 concentration (NaF concentration is 5 g/L); (b) variation with NaF and Na2SiO3 concentration (Na2C2O4 concentration is 10 g/L); (c) variation with NaF and Na2C2O4 concentration (Na2SiO3 concentration is 35 g/L)
Fig.3  Three dimensional analysis of MAO film porosity: (a) variation with Na2C2O4 and Na2SiO3 concentration (NaF concentration is 5 g/L); (b) variation with NaF and Na2SiO3 concentration (Na2C2O4 concentration is 10 g/L); (c) variation with NaF and Na2C2O4 concentration (Na2SiO3 concentration is 35 g/L)
Fig.4  Surface (a~c) and cross section (d~f) morphologies of MAO film of 3 h (a, d), 4 h (b, e), 5 h (c, f) oxidation time
Fig.5  XRD results of MAO film with different oxidation time
Sample12345Average
Substrate75.670.780.673.779.476
3 h9339129258791018933
4 h10471164103711949841085
5 h152515211346139015781472
Table 3  Hardness of MAO film with different thickness (HV)
Fig.6  Polarization curves of MAO film with different thickness
Thickness / μm

Corrosion Current

A·cm-2

Corrosion potential

V

Polarization resistance

Ω·cm2

Passive Active
301.7×10-7-0.9875.4×106Active
602.1×10-9-0.7311.4×107Active
908.5×10-10-0.7756.7×108Passive
Table 4  Fitting results of polarization curves
Fig.7  Before (a1~a3) and salt spray test 480 h (b1~b3), 1920 h (c1~c3) and 2800 h (d1~d3) of MAO film with 30 μm (a1~d1), 60 μm (a2~d2) and 90 μm (a3~d3) thickness
[1] Huang W F, Huang J G. Welding Guide for Aluminum and Aluminum Alloys [M]. Changsha: Hunan Science & Technology Press, 2004
(黄旺福, 黄金刚. 铝及铝合金焊接指南 [M]. 长沙: 湖南科学技术出版社, 2004)
[2] Du L, Liu Y Z, Luo X, et al. Microstructure of reheated semi-solid 5083 aluminum alloy and thixo-rolling [J]. Spec. Cast. Nonferrous Alloys, 2011, 31: 1115
(杜良, 刘允中, 罗霞等. 半固态5083铝合金的二次加热组织与触变轧制 [J]. 特种铸造及有色合金, 2011, 31: 1115)
[3] Qiu J, Shuai G, Ma S N, et al. Preparation and properties of local coatings on 5083 aluminum alloy by spraying micro-arc oxidation [J]. China Surf. Eng., 2015, 28(5): 105
(邱骥, 帅刚, 马世宁等. 5083铝合金喷洒式微弧氧化局部膜层的制备及性能 [J]. 中国表面工程, 2015, 28(5): 105)
[4] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
[5] Yi K Y. Preparation and wear-resisting and corrosion-resisting property of coatings on different silicon content aluminum alloy by micro arc [D]. Harbin: Harbin Institute of Technology, 2016
易奎杨. 不同硅含量铝合金微弧氧化膜层的制备及耐磨耐腐蚀性能 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[6] Van Tran B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition [J]. Am. Ceram. Soc. Bull., 1977, 56: 563
[7] Zhang X Y, Shi Y L. Technique of plasma microarc oxidation and its application [J]. J. Qingdao Inst. Chem. Technol. (Nat. Sci. Ed.), 2002, 23(1): 69
(张欣宇, 石玉龙. 等离子体微弧氧化技术及其应用 [J]. 青岛化工学院学报 (自然科学版), 2002, 23(1): 69)
[8] Zhuang J J, Song R G, Xiang N, et al. Corrosion behavior of micro-arc oxidation coatings formed on 6063 aluminum alloy [J]. Corros. Sci. Prot. Technol., 2017, 29: 492
(庄俊杰, 宋仁国, 项南等. 6063铝合金微弧氧化膜层的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 492)
[9] Song X J, Qin D. Wear resistance of micro arc oxidated ceramic layer on cast Si-Al alloy [J]. Mater. Prot., 2000, 33(4): 51
(宋希剑, 秦东. 铸造高硅铝合金表面微弧氧化陶瓷层的耐磨性 [J]. 材料保护, 2000, 33(4): 51)
[10] Wang Y K, Sheng L, Xiong R Z, et al. Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation [J]. Surf. Eng., 1999, 15: 109
doi: 10.1179/026708499101516425
[11] Wang M, Guo H Y, Li W F, et al. Effects of electrolyte concentration on the dielectric properties and microstructure of BaxSr(1-x) TiO3 films prepared by microarc oxidation [J]. J. Synth. Cryst., 2013, 42: 1584
(王敏, 郭会勇, 李文芳等. 电解液浓度对BaxSr(1-x)TiO3微弧氧化膜微观结构及介电性能的影响 [J]. 人工晶体学报, 2013, 42: 1584)
[12] He Z K, Tang P S. The effects of solution systems on micro-arc anodizing ceramic films [J]. Mater. Prot., 2001, 34(11): 12
(贺子凯, 唐培松. 溶液体系对微弧氧化陶瓷膜的影响 [J]. 材料保护, 2001, 34(11): 12)
[13] Saeedikhani M, Javidi M, Yazdani A. Anodizing of 2024-T3 aluminum alloy in sulfuric-boric phosphoric acids and its corrosion behavior [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2551
doi: 10.1016/S1003-6326(13)62767-3
[14] Lu C, Xie F Q, Zhu L P. Microstructure and tribological properties of microarc oxidation coatings on Al-Si alloy [J]. Key Eng. Mater., 2016, 703: 112
doi: 10.4028/www.scientific.net/KEM.703
[15] Gulbrandsen E, Taftø J, Olsen A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations [J]. Corros. Sci., 1993, 34: 1423
[16] Li J M, Jiang B L, Jing X T, et al. Effect of conductivity of solution on the growth rate and compact of micro-arc oxidation coating of LY12 aluminum [J]. Trans. Mat. Heat Treat., 2003, 24(1): 63
(李均明, 蒋百灵, 井晓天等. 溶液电导率对LY12铝合金微弧氧化陶瓷层的生长速度和致密度的影响 [J]. 材料热处理学报, 2003, 24(1): 63)
[17] Zhu X W, Han J M, Cui S H, et al. The research progress of micro-arc oxidation on Al and Mg alloys [J]. Mater. Sci. Technol., 2006, 14: 366
(祝晓文, 韩建民, 崔世海等. 铝、镁合金微弧氧化技术研究进展 [J]. 材料科学与工艺, 2006, 14: 366)
[18] Liang J, Guo B G, Tian J, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy [J]. Appl. Surf. Sci., 2005, 252: 345
doi: 10.1016/j.apsusc.2005.01.007
[19] Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J]. Appl. Surf. Sci., 2005, 246: 229
[20] Guo H F, An M Z, Huo H B, et al. Effect of operating condition on micro-arc oxidation of magnesium alloys [J]. Mater. Sci. Technol., 2006, 14: 616
(郭洪飞, 安茂忠, 霍慧彬等. 工艺条件对镁合金微弧氧化的影响 [J]. 材料科学与工艺, 2006, 14: 616)
[21] Xue W B, Deng Z W, Lai Y C, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81: 1365
doi: 10.1111/j.1151-2916.1998.tb02493.x
[22] Zhu Z F. Application Manual of Anodic Oxidation Technology for Aluminum Alloy [M]. Beijing: Metallurgical Industry Press, 2007
(朱祖芳. 铝合金阳极氧化工艺技术应用手册 [M]. 北京: 冶金工业出版社, 2007)
[23] Wei F F. The effect of Al content and pretreatment on microstructure and corrosion resistance of Mg alloys and its PEO coatings [D]. Hefei: University of Science and Technology of China, 2016
魏芳芳. 铝含量及前处理对镁合金及其PEO膜显微结构和耐蚀性能的影响 [D]. 合肥: 中国科学技术大学, 2016)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[11] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[13] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[15] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
No Suggested Reading articles found!