Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 326-332    DOI: 10.11902/1005.4537.2017.079
Current Issue | Archive | Adv Search |
Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating
Sanxi DENG1, Xiaoyu YAN1, Ke CHAI1(), Jinyi WU1, Hongwei SHI2
1 Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Material and Chemical Engineering College, Hainan University, Haikou 570228, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2953KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Pseudomonas sp. on the decomposition and anticorrosion behavior of polysiloxane varnish coating was investigated by means of microbiological analysis, EIS, SEM and FTIR. Results showed that after 1 d immersion in seawater with Pseudomonas sp. the corrosion resistance of the coating decreased obviously, while which changed little in the sterile seawater, indicating that at the initial immersion stage Pseudomonas sp. could significantly decrease the corrosion resistance of the coating, while decompose the coating. With the extension of immersion time, both in the Pseudomonas sp. inoculated seawater and the sterile seawater, the corrosion resistance of coatings decreased obviously. While for the immersion period of 1~30 d, the decrease of corrosion resistance of coatings was obviously higher in the former seawater, suggesting that Pseudomonas sp. caused damages to the coating. For long term immersion, Pseudomonas sp. exhibits only slight effect on the corrosion resistance of the coating. Additionally, whether seawater with or without Pseudomonas sp., only one time constant could be observed in the EEC obtained by fitting the EIS data. The SEM and FTIR results revealed that the decomposition of coatings could occur to a certain extent for 30 d immersion in the Pseudomonas sp. inoculated seawater.

Key words:  Pseudomonas sp.      electrochemical impedance spectroscopy      decomposition      organiccoating     
Received:  17 May 2017     
ZTFLH:  TG174.4  
Fund: Supported by Natural Science Foundation of Hainan Province (517064), National Natural Science Foundation of China (51761011, 51261006, 51161007 and 50761004) and National Basic Research Program of China (2014CB643304)

Cite this article: 

Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 326-332.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.079     OR     https://www.jcscp.org/EN/Y2018/V38/I4/326

Fig.1  Growth curve of Pseudomonas sp. in seawater
Fig.2  Nyquist (a, c) and Bode (b, d) plots of polysiloxane varnish coating immersed in sterile seawater (a, b) and Pseudomonas sp. inoculated seawater (c, d)
Fig.3  Equivalent electric circuit of EIS of polysiloxane varnish coating immersed in two different solutions
System Immersion time Rc / Ωcm2 Cc / F
Sterile seawater 1 h 4.614×109 6.428×10-11
1 d 4.590×109 6.198×10-11
3 d 3.939×109 8.667×10-11
5 d 8.425×108 1.012×10-10
13 d 9.275×108 8.324×10-10
30 d 1.172×109 1.084×10-10
90 d 5.913×108 9.312×10-10
120 d 6.877×108 9.901×10-10
Seawater inoculated with Pseudomonas sp. 1 h 6.769×109 6.813×10-11
1 d 3.202×109 6.837×10-11
3 d 3.136×109 8.156×10-11
5 d 3.240×109 1.192×10-10
13 d 3.774×109 9.855×10-9
30 d 4.044×108 9.628×10-9
90 d 6.660×108 8.754×10-11
120 d 7.119×108 1.166×10-10
Table 1  Fitting values of various electrochemical elements in the equivalent circuit model
Fig.4  SEM images of the surfaces of the coating before immersion (a) and after 30 d immersion in sterile seawater (b) and seawater inoculated with Pseudomonas sp. (c)
Fig.5  FTIR spectra of the coating before immersion (a) and after 30 d immersion in sterile seawater (b) and seawater inoculated with Pseudomonas sp. (c)
[1] Chen D B, Hu Y L, Chen X Q.Progress of microbial influenced corrosion in warship[J]. J. Naval Univ. Eng., 2006, 18(1): 79(陈德斌, 胡裕龙, 陈学群. 舰船微生物腐蚀研究进展[J]. 海军工程大学学报, 2006, 18(1): 79)
[2] Tambe S P, Jagtap S D, Chaurasiya A K, et al.Evaluation of microbial corrosion of epoxy coating by using sulphate reducing bacteria[J]. Prog. Org. Coat., 2016, 94: 49
[3] Sheng X X, Ting Y P, Pehkonen S O.The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corros. Sci., 2007, 49: 2159
[4] Belov D V, Sokolova T N, Smirnov V F, et al.Corrosion of aluminum and its alloys under the effect of microscopic fungi[J]. Prot. Met., 2008, 44: 737
[5] Iverson W P.Microbial corrosion of metals[J]. Adv. Appl. Microbiol., 1987, 32: 1
[6] Xu J L, Huang T L, Tang Z X, et al.Isolation of petroleum degradation bacteria and its application to bioremediation of petroleum-contaminated soil[J]. Acta Sci. Circumst., 2007, 27: 622(徐金兰, 黄廷林, 唐智新等. 高效石油降解菌的筛选及石油污染土壤生物修复特性的研究[J]. 环境科学学报, 2007, 27: 622)
[7] Shien W Y, Chiu X H.Diversity of marine vibrios[J]. World Sci-Tech R&D, 2005, (2): 34(谢文阳, 邱秀慧. 海洋弧菌多样性[J]. 世界科技研究与发展, 2005, (2): 34)
[8] Díaz E, Ferrández A, Prieto M A, et al.Biodegradation of aromatic compounds by Escherichia coli[J]. Microbiol. Mol. Biol. Rev., 2001, 65: 523
[9] Semple K T, Cain R B, Schmidt S.Biodegradation of aromatic compounds by microalgae[J]. FEMS Microbiol. Lett., 1999, 170: 291
[10] Li C, Zhang C Y, Chen S H, et al. Gene cloning and function analysis involved in the biodegradation of aromatic compounds by bacillus NAPZ [J]. Adv. Mater. Res., 2013, 726-731: 373
[11] Liu H W, Fu C Y, Gu T Y, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
[12] Gubner R, Beech I B.The effect of extracellular polymeric substances on the attachment of Pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel[J]. Biofouling, 2000, 15: 25
[13] Guan F, Zhai X F, Duan J Z, et al.Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy[J]. Surf. Coat. Technol., 2017, 316: 171
[14] Zhang Z Z, Hou Z W, Yang C Y, et al.Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Bioresource Technol., 2011, 102: 4111
[15] Allsop P J, Chisti Y, Moo-Young M, et al.Dynamics of phenol degradation by Pseudomonas putida[J]. Biotechnol. Bioeng., 1993, 41: 572
[16] Nanda S, Sahu S S, Abraham J.Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas (spp.)[J]. J. Appl. Sci. Environ. Manage., 2010, 14(2): 57
[17] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
[18] Bierwagen G P, He L, Li J, et al.Studies of a new accelerated evaluation method for coating corrosion resistance—thermal cycling testing[J]. Prog. Org. Coat., 2000, 39: 67
[19] Peres R S, Armelin E, Moreno-Martínez J A, et al. Transport and antifouling properties of papain-based antifouling coatings[J]. Appl. Surf. Sci., 2015, 341: 75
[1] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[2] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[4] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[5] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[7] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[8] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[9] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[10] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[11] Nana WANG, Fengtao WANG, Liang CHANG, Zhiping ZHU. Decomposition of Typical Organic Substance in Water Supply of Boiler and Corrosivity of Its Decomposition Products[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
[15] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
No Suggested Reading articles found!