Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 597-604    DOI: 10.11902/1005.4537.2016.125
Current Issue | Archive | Adv Search |
Decomposition of Typical Organic Substance in Water Supply of Boiler and Corrosivity of Its Decomposition Products
Nana WANG1, Fengtao WANG2, Liang CHANG2, Zhiping ZHU1()
1 Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, China
2 Henan Electric Power Research Institute, Zhengzhou 450052, China
Download:  HTML  PDF(3023KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since the retrofitting of a thermal power unit for heat delivery, correspondingly, the supplied water of boiler significantly increased from ordinary 3%~5% to above 50%, thereby the conductivity of the water generally exceeded, resulting in serious acid corrosion troubles in low pressure cylinder of the steam turbine. It is known that humic acid is a typical organic substance related with corrosion troubles in the water system, thus the decomposition behavior of humic acid at 350 ℃ was studied in concentration range 0~20 mg/L, while decomposition products specially from the test by 7.5 mg/L of humic acid at different time intervals were extracted for composition determination with ion chromatography and TOC analyzer. Thereafter the effect of low molecular organic acids with impurities on the corrosion behavior of steel 1Cr13 was characterized by means of electrochemical methods as well as SEM, EDS and XRD. The results showed that high temperature decomposition products of humic acid contained low molecular organic acids mainly of acetic acid and formic acid,and impurity ions of SO42-, Cl-, NO3- and F-. Obviously, the ions of SO42-, NO3- and Cl- were aggressive to the steel 1Cr13, in the contrary, F- exhibited inhibition effect with the increasing concentration.

Key words:  make-up water      anion      humic acid      decomposition product      TOC     
Received:  25 August 2016     
ZTFLH:  TG172.42  
Fund: Supported by National Natural Hunan Province Science & Technology Key Grant Project Foundation (2013GK2016)and Henan Electric Power Company Research Institute Self-Financing Research Project Foundation (19151209)

Cite this article: 

Nana WANG, Fengtao WANG, Liang CHANG, Zhiping ZHU. Decomposition of Typical Organic Substance in Water Supply of Boiler and Corrosivity of Its Decomposition Products. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 597-604.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.125     OR     https://www.jcscp.org/EN/Y2017/V37/I6/597

Fig.1  Basic unit structure of humic acid
Fig.2  pH values of gas and liquid phases generated after decomposition of humic acid at 350 ℃ for 12 h
Fig.3  Contents of various anions in the liquid phase generated after decomposition of humic acid at 350 ℃ for 12 h
Fig.4  Contents of various anions in the gas phase generated after decomposition of humic acid at 350 ℃ for 12 h
Fig.5  Concentrations of various anions in the liquid phase generated after decomposition of humic acid with the content of 7.5 mg/L at 350 ℃
Fig.6  Contents of TOC in the gas/liquid phase generated after decomposition of humic acid at 350 ℃ for 12 h
Fig.7  Concentrations of TOC in the gas/liquid phase generated after decomposition of humic acid with the content of 7.5 mg/L at 350 ℃
Fig.8  Polarization curves for 1Cr13 steel after immersed in different concentrations of NaCl solutions at 80 ℃
Fig.9  Nyquist plots of 1Cr13 steel after immersed in different concentrations of NaCl solutions at 80 ℃
Fig.10  Equivalent circuit used for quantitative evaluation of ElS spectra
CCl- βamVdev-1 βcmVdev-1 IcorrμAcm-2 EcorrV
Pure water 5.039 4.925 0.2975 -0.3413
0 mg/L 5.491 6.086 0.5493 -0.3660
5 mg/L 5.195 4.883 2.3200 -0.3889
50 mg/L 4.960 4.997 2.9710 -0.3895
100 mg/L 5.394 4.767 3.3290 -0.3995
Table 1  Polarization parameters for 1Cr13 steel after immersed in NaCl solutions with different concentrations at 80 ℃
CCl- Rs / kΩ CP / μF RP / kΩcm-2
Pure water 9.5350 0.4110 55.08
0 mg/L 4.1200 0.1505 32.75
5 mg/L 0.3860 0.2549 4.338
50 mg/L 0.2070 0.3606 3.781
100 mg/L 0.1928 0.5747 2.233
Table 2  EIS parameters for 1Cr13 electrodes after immer-sed in different concentrations of NaCl solution at 80 ℃
Fig.11  SEM image (a) and EDS result (b) of Cl- corroded specimens surfaces at 80 ℃
Fig.12  Surface images of sample before (a) and after (b) corrosion in 50 mg/L Cl- solution at 80 ℃
Fig.13  SEM image (a) and EDS result (b) of F- corroded specimens surfaces at 80 ℃
Fig.14  XRD pattern of F- corroded specimens surfaces at 80 ℃
[1] Cheng D T, Meng W G, Liu Y, et al.Feasibility study of large steam turbine condenser transformation[J]. Turb. Technol., 2016, 58: 125(程东涛, 孟伟光, 刘杨等. 大型汽轮机凝汽器改造可行性研究[J]. 汽轮机技术, 2016, 58: 125)
[2] El-Said M, Ramzi M, Abdel-Moghny T.Analysis of oilfield waters by ion chromatography to determine the composition of scale deposition[J]. Desalination, 2009, 249: 748
[3] Randtke S J.Organic contaminant removal by coagulation and related process combinations[J]. J. Am. Water Works Assoc., 1988, 80: 40
[4] Ameer M A, Fekry A M, Heakal F E T. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions[J]. Electrochim. Acta, 2004, 50: 43
[5] Yan J Y, Shi Y Y, Zhu Y, et al.Study on distribution of low molecular weight organic acids and related inorganic anions in thermal system of power plants[J]. Bull. Sci. Technol., 1993, 9: 86(严晋婴, 施荫玉, 朱岩等. 低分子量有机酸在火力发电厂热力系统中分布状况的研究[J]. 科技通报, 1993, 9: 86)
[6] Cáceres L, Vargas T, Herrera L.Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions[J]. Corros. Sci., 2009, 51: 971
[7] Sun Q Q, Zhou W H, Xie Y H, et al.Effect of trace chloride and temperature on electrochemical corrosion behavior of 7150-T76 AL alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 121(孙擎擎, 周文辉, 谢跃煌等. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36: 121)
[8] Fin?gar M, Milo?ev I.Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid[J]. Corros. Sci., 2010, 52: 2430
[9] Trueba M, Trasatti S P.Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
[10] Ezuber H, El-Houd A, El-Shawesh F.A study on the corrosion behavior of aluminum alloys in seawater[J]. Mater. Des., 2008, 29: 801
[11] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208
[12] Zou Y, Wang J, Zheng Y Y.Electrochemical corrosion behaviors of rusted carbon steel[J]. Acta Phys.-Chim. Sin., 2010, 26: 2361(邹妍, 王佳, 郑莹莹. 锈层下碳钢的腐蚀电化学行为特征[J]. 物理化学学报, 2010, 26: 2361)
[13] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208
[14] Zou Y, Zheng Y Y, Wang Y H, et al.Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta Metall. Sin., 2010, 46: 123(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123)
[15] Peng X, Wang J, Wang J L, et al.Corrosion electrochemical parameters test of rusted carbon steel in seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 449(彭欣, 王佳, 王金龙等. 海水中带锈Q235钢腐蚀电化学参数测定[J]. 中国腐蚀与防护学报, 2013, 33: 449)
[16] Nishimura T, Katayama H, Noda K, et al.Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56: 935
[17] Hu Y B, Dong C F, Sun M, et al.Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments[J]. Corros. Sci., 2011, 53: 4159
[18] Sun M, Xiao K, Dong C F, et al.Electrochemical behavior of 300M and Cr9 steel in acidic environments[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 449(孙敏, 肖葵, 董超芳等. 300M和Cr9钢在酸性介质中的电化学性能研究[J]. 中国腐蚀与防护学报, 2012, 32: 449)
[19] Pardo A, Merino M C, Coy A E, et al.Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4[J]. Corros. Sci., 2008, 50: 780
[20] Graedel T E.Corrosion mechanisms for aluminum exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 204C
[21] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng., 2009, B162: 1
[22] Wu X Q, Fu Y, Ke W, et al.Corrosion behavior of high nitrogen austenitic stainless steels[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 197(吴欣强, 付尧, 柯伟等. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 197)
[23] Lim Y S, Kim J S, Ahn S J, et al.The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20wt.% Mn-substituted type 316L stainless steels[J]. Corros. Sci., 2001, 43: 53
[24] Cohen P.The ASME handbook on water technology for thermal power systems [R]. New York: The American Society of Mechanical Engineers, 1989: 588
[25] Zhu Z P.Study on mechanism for removal of organic matter by carbon nanotubes composites in boiler make-up water [D]. Changsha: Central South University, 2011(朱志平. 碳纳米管复合物去除电站锅炉补给水中有机物的机理研究 [D]. 长沙: 中南大学, 2011)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] WANG Yi,ZHANG Dun. Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[3] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[4] WANG Qing, MA Xuemei, SHI Haiyan, YUAN Shan, GUO Jianfeng, LIANG Dong, HU Zhiyong. Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.
[5] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[6] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[7] ZHU Zhiping, LU Haiwei, TANG Xueying, JIAO Xiaocui, YU Weiwei. Corrosion Characteristics of 15CrMoG Steel a Supercritical Unit Water-wall Tube Material in Waters ofDifferent Water Chemistry[J]. 中国腐蚀与防护学报, 2014, 34(3): 243-248.
[8] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[9] WANG Yonggang, LIU Wei, CAO Lixin, SU Ge, GUO Xiangqin, DUAN Ruijing, XU Hongmei. PREPARATION OF MWCNT/TiO2 COMPOSITE FILM AND ITS APPLICATION OF PHOTOCATHODIC PROPERTY FOR STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(6): 485-490.
[10] MU Lijun, ZHAO Wenzhen. EFFECT OF PRE-STRAIN STATES ON ELECTRONIC PROPERTY OF PASSIVE FILM ON J55 PIPELINE STEEL IN CHANGQING OILFIELD LUO-HE STRATUM WATER[J]. 中国腐蚀与防护学报, 2010, 30(6): 491-497.
[11] LIU Lihong, ZHANG Zihua, YAN Jie, SU Shaoyan. CORROSION BEHAVIOR OF AUTOCATALYTIC PLATING Ni-P COATING IN MARINE ATMOSPHERIC ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(5): 369-373.
[12] LI Jian ZHANG Tao MENG Guozhe SHAO Yawei WANG Fuhui. STOCHASTIC ANALYSIS OF THE MAGNETIC FIELD INFLUENCE ON THE PITTING MECHANISM OF PURE MAGNESIUM[J]. 中国腐蚀与防护学报, 2009, 29(6): 405-410.
[13] YANG Yange CUIZhongyu CHEN Jie CAO Jingtao ZHANG Tao SHAO Yawei MENG Guozhe WANG Fuhui. INFLUENCE OF HYDROSTATIC PRESSURE ON THE PITTING BEHAVIOR OF Fe-20Cr Alloy[J]. 中国腐蚀与防护学报, 2009, 29(6): 415-420.
[14] CAO Jia SHAO Yawei ZHANG Tao MENG Guozhe. ROLES OF ZINC PHOSPHATE ON THE CORROSION OF THE SCRATCHED EPOXY COATING[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.
[15] Jingmao Zhao. [J]. 中国腐蚀与防护学报, 2004, 24(3): 174-178 .
No Suggested Reading articles found!