Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 441-449    DOI: 10.11902/1005.4537.2015.182
Orginal Article Current Issue | Archive | Adv Search |
Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions
Jianchun ZHANG1(),Jingyang JIANG2,Yang LI1,Jinjie SHI2,Longfei ZUO1,Danqian WANG2,Han MA1
1. Institute of Research of Iron & Steel, Shasteel, Zhangjiagang 215625, China
2. School of Material Science and Engineering, Southeast University, Nanjing 211189, China
Download:  HTML  PDF(907KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior of the seawater corrosion resistant rebar steel 00Cr10MoV and the formed passive films on this rebar in simulated concrete pore solutions were examined by means of electrochemical impedance spectroscopy (EIS), polarization curves and X-ray photoelectron spectroscopy (XPS). While the effect of Cl- in solutions on the formation of passive films was also investigated. The results show that passive films formed on the 00Cr10MoV steel in simulated concrete pore solutions were composed of FeO, Cr2O3, γ-FeOOH and CrOOH. The Cl- prevented the formation of passive films on the steel, and thereby resulted in decrease of pitting potential and charge-transfer resistance, but in little impact on the passive current density. The passive films formed on the steel after immersion in artificial solutions for 240 h exhibited excellent corrosion resistance to Cl- solutions, which could maintain a large charge-transfer resistance of 2.755×106 Ωcm2 in solutions with Cl- concentration as high as 5 mol/L. In general, the 00Cr10MoV steel exhibited resistance to Cl- attack superior to 20MnSiV steel.

Key words:  seawater corrosion resistant rebar      simulated concrete pore solution      passive film      electrochemical impedance spectroscopy      charge-transfer resistance     

Cite this article: 

Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 441-449.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.182     OR     https://www.jcscp.org/EN/Y2016/V36/I5/441

Steel C Si Mn P S Cr Mo V Fe
00Cr10MoV ≤0.03 0.40~0.60 1.40~1.60 ≤0.01 ≤0.01 9.5~10.5 0.9~1.2 0.03~0.10 Bal.
20MnSiV 0.21 0.49 1.44 0.019 0.007 --- --- 0.028 Bal.
Table 1  Chemical compositions of 00Cr10MoV and 20MnSiV steels (mass fraction / %)
Fig.1  XPS results of all elements of passive films formed on 00Cr10MoV (a) and 20MnSiV (b) rebars afterimmersion in simulated concrete pore solution without Cl- for 240 h
Fig.2  XPS results of Fe (a, c, e) and Cr (b, d, f) in the depths of 10 nm (a, b), 40 nm (c, d), 100 nm (e, f) from the top surface of passive film formed on 00Cr10MoV specimen after immersion in simulated concrete pore solution without Cl- for 240 h
Fig.3  Depth profiles of Fe, Cr, O in passive film formed on 00Cr10MoV steel after immersion for 240 h in solutionswithout Cl- (a) and with 0.6 mol/L Cl- (b)
Fig.4  XPS results of Fe (a) and Cr (b) in the 10 nm depth from the top surface of passive film formed on 20MnSiV specimen after immersion in simulated concrete pore solution without Cl- for 240 h
Fig.5  Polarization curves of 00Cr10MoV and 20MnSiV steels after immersion for 0.5 h in solutions without (a) and with (b) 0.6 mol/L Cl-
Fig.6  Nyquist (a, c) and impedance module (b, d) plots of two steels after immersion for 0.5 h in the solutions without Cl- (a, b) and with 0.6 mol/L Cl- (c, d)
Fig.7  Equivalent circuit for EIS
Solution Sample Rs / Ωcm2 Qdl-Yo / Ssncm-2 Qdl-n / 0~1 Rt / Ωcm2
Ca(OH)2 00Cr10MoV 28.36 2.377×10-5 0.926 3.138×105
20MnSiV 23.69 2.713×10-5 0.941 2.384×105
Ca(OH)2+NaCl 00Cr10MoV 3.80 2.912×10-5 0.931 1.327×105
20MnSiV 1.64 3.323×10-5 0.947 0.904×105
Table 2  Fitting results of EIS
Fig.8  Variations of corrosion potentials of two steels with the concentration of Cl- in simulated solution
Fig.9  Nyquist (a, c) and impedance module (b, d) plots of 00Cr10MoV (a, b) and 20MnSiV (c, d) samples after immersion in simulated solutions with different concentrations of Cl-
Fig.10  Rt vs Cl- concentration for 00Cr10MoV and 20MnSiV steels
[1] Wang Y, Shi Y X, Wei B M, et al.Study on the passive film and effect of Cl- on passive film by XPS[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 107
[1] (汪鹰, 史苑芗, 魏宝明等. 用XPS研究钢筋钝化膜和Cl-对钝化膜的影响[J]. 中国腐蚀与防护学报, 1998, 18(2): 107)
[2] Chen H Y, Li H Y, Chen P M, et al.Electrochemical corrosion behavior of reinforcing steel in simulated concrete solution[J]. J. Build. Mater., 2013, 16(1): 130
[2] (陈海燕, 李欢园, 陈丕茂等. 钢筋在混凝土模拟液中的电化学腐蚀行为[J]. 建筑材料学报, 2013, 16(1): 130)
[3] Wang X Y, Wu Y S, Zhang L, et al.Research progress of passive film of stainless steel[J]. Mater. Rev., 1999, 13(3): 13
[3] (汪轩义, 吴荫顺, 张琳等. 不锈钢钝化膜研究进展[J]. 材料导报, 1999, 13(3): 13)
[4] Ennaoui A, Schlichth?rl G, Fiechter S, et al.Vapor phase epitaxial growth of FeS2 pyrite and evaluation of the carrier collection in liquid-junction solar cell[J]. Sol. Energy Mater. Sol. Cells, 1992, 25(2): 169
[5] Zuo L F, Ma H, Huang W K, et al.Development of 400MPa-grade seawater corrosion resistant rebar in sha-steel[J]. Steel Roll., 2014, 31: 58
[5] (左龙飞, 麻晗, 黄文克等. 沙钢400MPa级耐海水腐蚀螺纹钢的开发[J]. 轧钢, 2014, 31: 58)
[6] Zhang J C, Huang W K, Ma H.Microstructure and properties of 20MnSiCrV corrosion resistant rebar in continuous cooling transformation[J]. Hot Work. Technol., 2014, 43(6): 91
[6] (张建春, 黄文克, 麻晗. 耐蚀钢筋20MnSiCrV的连续冷却转变组织与性能[J]. 热加工工艺, 2014, 43(6): 91)
[7] Chu W, Shi Y X, Wei B M, et al.Study on the electrochemical method for simulating the passive film of the steel in the concrete pore solution[J]. J. Electrochem., 1995, 1(3): 291
[7] (储炜, 史苑芗, 魏宝明等. 模拟混凝土孔隙液中钢筋钝化膜的光电化学方法研究[J]. 电化学, 1995, 1(3): 291)
[8] Wang J.Study on corrosion resistance passive film on stainless steel surface [D]. Chengdu: Southwest Jiaotong University, 2014
[8] (王杰. 不锈钢表面耐点蚀性钝化膜的研究 [D]. 成都: 西南交通大学, 2014)
[9] Gonz Lez-garci' A Y, Burstein G T, Gonz Lez S, et al. Imaging meta stable pits on austenitic stainless steel in situ at the open-circuit corrosion potential[J]. Electrochem. Commun., 2004, 6(7): 637
[10] Cheng Y F, Bullerwell J, Steward F R.Electrochemical investigation of the corrosion behavior of chromium modified carbon steel in water[J]. Electrochim. Acta, 2003, 48(11): 1521
[11] Huang J H, Li Z G, Qian Y H.Study on corrosion resistance of low alloy corrosion resistant steel in simulated corrosion environment[J]. Shanghai Met., 2006, 28(4): 6
[11] (黄锦花, 李自刚, 钱余海. 低合金耐海水腐蚀钢在模拟腐蚀环境下的耐蚀性研究[J]. 上海金属, 2006, 28(4): 6)
[12] Sikora E, Macdonald D D.Nature of the passive film on nickel[J]. Electrochim. Acta, 2002, 48(1): 69
[13] Zhang C X, Zhang Z H.Study on corrosion resistance of G3 Ni based alloy passive film[J]. Bao-steel Technol., 2008, (5): 35
[13] (张春霞, 张忠铧. G3镍基合金钝化膜的耐蚀性研究[J]. 宝钢技术, 2008, (5): 35)
[14] Cai W T, Zhao G S, Zhao D W, et al.Corrosion resistance and semiconductor properties of passive film of super 13Cr stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2011, 33(10): 1226
[14] (蔡文婷, 赵国山, 赵大伟等. 超级13Cr不锈钢的钝化膜耐蚀性与半导体特性[J]. 北京科技大学学报, 2011, 33(10): 1226)
[15] Gui Y, Gao Y.Research progress on the characteristics of passive film on stainless steel surface[J]. Spec. Steel, 2011, 32(3): 20
[15] (桂艳,高岩等. 不锈钢表面钝化膜特性的研究进展[J]. 特殊钢, 2011, 32(3): 20)
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[8] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[15] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
No Suggested Reading articles found!