Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 205-211    DOI: 10.11902/1005.4537.2015.122
Orginal Article Current Issue | Archive | Adv Search |
Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network
Jing LIU1,Xiaolu LI1,Chongwei ZHU1,Tao ZHANG1,2(),Guanxin ZENG3,Guozhe MENG1,2,Yawei SHAO1,2
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. North-Tarim Management Department of Exploration and Development Project, Petrochina Tarim Oilfield Company, Korla 841000, China
Download:  HTML  PDF(789KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316L stainless steel is widely used for enhancing the pitting resistance of pipelines in gas field. The corrosion environment is complex and diversified in different working districts of gas field. Therefore, it is necessary to develop a model for predicting the pitting resistance of pipelines serving in different corrosive environments. Critical pitting temperature (CPT) is considered as a criterion for evaluating the pitting resistance of stainless steel. Based on a survey on the operation situations of gas field, the relevant data of CPT for 316L stainless steel is acquired by potentiodynamic polarization method in solutions with various Cl- concentrations and pH values, which are selected to correspond with the real environments in operation. Then, an artificial neutral network (ANN) model is developed to predict the CPT, and therewith to compare with the measured data. The results show that the CPT decreases with the increase of Cl- concentration, but on which pH value has little influence. The developed ANN model has good ability to predict the CPT of 316L stainless steel, and can be used for the prediction of CPT in complex environments in gas field. It is also revealed that there is no interactive effect between Cl- concentration and pH value, and Cl- concentration was the main influencing factor on the CPT. Therefore, Cl- concentration will be peculiarly concerned with for the implementation of a corrosion control project in gas field.

Key words:  316L stainless steel      gas field      critical pitting temperature      artificial neutralnetwork      prediction     
Received:  15 September 2015     

Cite this article: 

Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 205-211.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.122     OR     https://www.jcscp.org/EN/Y2016/V36/I3/205

Fig.1  Schematic diagram of working electrode[11]
Fig.2  Cumulative probabilities of Cl- concentration and pHvalue of formation water in various working areas of one gas field in Xinjiang
Fig.3  Schematic diagram for the structure of ANN
Fig.4  Potentiodynamic polarization curves of 316LSS under the condition with Cl- concentration of 1.4×105 mg/L and pH value of 4 (a) and break down potentials at different temperatures obtained from Fig.4a (b)
Fig.5  Breakdown potential as a function of temperature under the conditions of different Cl- concentrations and pH values: (a) 3.7×103 mg/L, (b) 3.7×104 mg/L, (c) 8.5×104mg/L, (d) 1.4×105 mg/L, (e) 2.18×105 mg/L
pH Cl- concentration / mgL-1
3.70×103 3.70×104 8.50×104 1.40×105 2.18×105
4.0 13.7 ℃ 9.3 ℃ 9.6 ℃ 7.1 ℃ 6.4 ℃
5.5 14.0 ℃ 9.8 ℃ 9.0 ℃ 7.1 ℃ 6.6 ℃
7.0 14.1 ℃ 9.8 ℃ 9.7 ℃ 7.4 ℃ 5.4 ℃
8.5 14.2 ℃ 11.0 ℃ 9.4 ℃ 6.2 ℃ 5.2 ℃
Table 1  Critical pitting temperature (CPT) of 316LSS under the conditions of various Cl- concentrations and pH values
Fig.6  Variation of CPT of 316L SS with Cl- concentration
Fig.7  Plots of CPT of 316LSS vs pH value
Set pH c(Cl-)
mgL-1
CPT / ℃
Measured Predicted Residual
Train 4.0 3.70×103 13.7 13.2 -0.5
4.0 3.70×104 9.3 6.9 -2.4
4.0 1.40×105 7.1 6.0 -1.1
4.0 2.18×105 6.4 6.6 0.2
5.5 3.70×103 14.0 14.2 0.2
5.5 3.70×104 9.8 9.9 0.1
5.5 1.40×105 7.1 6.8 -0.3
5.5 2.18×105 6.6 6.4 -0.2
7.0 3.70×103 14.1 14.0 -0.1
7.0 8.50×104 9.7 9.5 -0.2
7.0 1.40×105 7.4 7.6 0.2
7.0 2.18×105 5.4 5.1 -0.3
8.5 3.70×103 14.2 14.0 -0.2
8.5 3.70×104 11.0 10.9 -0.1
8.5 8.50×104 9.4 10.2 0.8
8.5 2.18×105 5.2 7.0 1.8
Test 4 8.50×104 7.1 5.6 -1.5
5.5 8.50×104 9.0 9.7 0.7
7.0 3.70×104 9.8 11.0 1.2
8.5 1.40×105 6.2 7.5 1.3
Table 2  Comparison of predicted values and experime-ntal values of CPT
Fig.8  Comparison diagram of predicted and experimental values of CPT
Fig.9  Three-dimension surface of variations of CPT with NaCl concentration and pH value
[1] Ramana K V S, Anita T, Mandal S, et al. Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling[J]. Mater. Des., 2009, 30(9): 3770
[2] Brigham R J, Tozer E W.Temperature as a pitting criterion[J]. Corrosion., 1973, 29(1): 33
[3] Brigham R J, Tozer E W.Effect of alloying addition on the pitting resistance of 18%Cr austenite stainless steel[J]. Corrosion, 1974, 30(5): 161
[4] Qvarfort R.Critical pitting temperature measurements of stainless steels with an improved electrochemical method[J]. Corros. Sci., 1989, 29(8): 987
[5] Deng B, Jiang Y M, Gong J, et al.Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions[J]. Electrochim. Acta, 2008, 53(16): 5220
[6] Deng B, Jiang Y M, Hao Y W, et al.The synergetic effect of chloride and fluoride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 30
[6] (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28(1): 30)
[7] Ernst P, Newman R C.Explanation of the effect of high chloride concentration on the critical pitting temperature of stainless steel[J]. Corros. Sci., 2007, 49(9): 3705
[8] Thomas E Q, Liu Y A.Translated by Cha J R, et al. The Application of Artificial Intelligence in Chemical Engineering [M]. Beijing: China Petrochemical Press, 1994
[8] (Thomas E Q, Liu Y A著. 查金荣等译. 人工智能在化学工程中的应用 [M]. 北京: 中国石化出版社, 1994)
[9] Ebrahimi N, Moayed M H, Davoodi A.Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium[J]. Corros. Sci., 2011, 53(4): 1278
[10] Deng B, Jiang Y M, Liao J X, et al.Dependence of critical pitting temperature on the concentration of sulphate ion in chloride-containing solutions[J]. Appl. Surf. Sci., 2007, 253(18): 7369
[11] Zhang T, Wang D Y, Shao Y W, et al.A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement[J]. Corros. Sci., 2012, 58: 202
[12] ASTM Designation: G 150-99, Standard test method for electrochemical critical pitting temperature testing of stainless steels[S]
[13] Moayed M H, Laycock N J, Newman R C.Dependence of the critical pitting temperature on surface roughness[J]. Corros. Sci., 2003, 45(6): 1203
[14] Hoseinpoor M, Momeni M, Moayed M H, et al.EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidi?ed ferric chloride solution[J]. Corros. Sci., 2014, 82: 197
[15] Kenny E D, Ramón S C, Paredes R S C, et al. Arti?cial neural network corrosion modeling for metals in an equatorial climate[J]. Corros. Sci., 2009, 51(10): 2266
[16] Li X G.Material Corrosion and Protection [M]. Changsha: Central South University Press, 2009
[16] (李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009)
[17] Wu W W, Jiang Y M, Liao J X, et al.The effect of Cl- on critical pitting temperature of 304 and 316 stainless steels[J]. Corros. Sci. Prot. Technol., 2007, 19(1): 16
[17] (吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响[J]. 腐蚀科学与防护技术, 2007, 19(1): 16)
[18] Laycock N J, Moayed M H, Newman R C.Metastable pitting and the critical pitting temperature[J]. J. Electrochem. Soc., 1998, 145(8): 2622
[19] Newman R C.2001 Whitney award lecture: Understanding the corrosion of stainless steel[J]. Corrosion, 2001, 57(12): 1030
[1] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[4] Baohui GUO, Youxu QIU, Hailong LI. Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[5] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[6] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[7] Xinsheng ZHANG,Naining CAO,Yayun LI. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[8] Yanan NIE,Hao SHEN,Kunpeng GU,Chengqi WANG. Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[9] Haixia LIU,Xuequn CHENG,Xiaogang LI,Kui XIAO,Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[10] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[11] Zhian DENG,Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG. A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[12] Zhiping ZHU,Zhaohui YIN,Sen LIU,Jianfeng XIAO. Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[13] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[14] Fengping WANG,Lan LIU,Yanwei DING,Suijun HU,Zhaobin LIU,Dan LIU,Li ZHANG. Simulation of Carbon Steel Corrosion in Oil-gas Field Produced Waters Containing Hydrogen Sulfide[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[15] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
No Suggested Reading articles found!