Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 212-218    DOI: 10.11902/1005.4537.2015.116
Orginal Article Current Issue | Archive | Adv Search |
Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution
Boqiang SONG,Xu CHEN(),Guiyang MA,Rui LIU
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(980KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X70 pipeline steel in a near-neutral pH solution NS4 with and without sulfate-reducing bacteria (SRB) respectively was studied by means of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and microscopic observation. The results showed that the corrosion rate of X70 steel increased with time in NS4 solution without SRB; The growth process of the SRB in the solution NS4 can be divided into three phases: logarithmic phase (1~3 d), stable growth phase (4~7 d) and death phase (7~14 d). The influence of SRB on the corrosion rate of X70 pipeline steel in the solution NS4 with SRB was related to the growth process of SRB. A compact biological film could form on the steel surface in the stage of logarithmic phase and stable growth phase, which was conducive to enhancing the protectiveness of corrosion products on the steel and therewith the corrosion rate of X70 steel in the NS4 with SRB was lower than that without SRB. While the corrosion of X70 steel in the NS4 with SRB in the death phase was more serious than that without SRB, while the scale of corrosion products became thicker gradually, then the biological film broken and therewith the corrosion rate increased.

Key words:  X70 pipeline steel      sulfate reducing bacteria      growth cycle      electrochemical corrosion     
Received:  24 August 2015     

Cite this article: 

Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 212-218.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.116     OR     https://www.jcscp.org/EN/Y2016/V36/I3/212

Fig.1  Microstructure of X70 pipeline steel
Fig.2  Growth chart determined by OD method for SRB in the solution of NS4
Fig.3  Surface morphologies of X70 steel after removal of the rust layers formed in NS4 solutions without (a~c) and with (d~f) SRB for 4 d (a, d), 7 d (b, e) and 14 d (c, f)
Fig.4  Evolutions of open circle potential of X70 steel in NS4 solutions with and without SRB
Fig.5  Nyqusit (a), Bode and phase angle (b) plots of X70 steel immersed in NS4 solution without SRB for different time
Fig.6  Nyqusit (a), Bode and phase angle (b) plots of X70 steel immersed in NS4 solution with SRB for different time
Fig.7  Equivalent circuits for EIS of X70 steel during immersion in NS4 solutions with (a) and without (b) SRB
Condition Time / d Rs / Ωcm2 Qf / μFcm-2 nf Rf / Ωcm2 Qdl / μFcm-2 ndl Rt / Ωcm2
Without SRB 1 40.96 --- --- --- 2.859×10-4 0.8455 1.7×104
4 43.86 --- --- --- 3.021×10-4 0.8232 1.4×104
7 36.35 --- --- --- 2.659×10-4 0.8118 1.1×104
10 55.21 --- --- --- 0.8366×10-4 0.8562 1.03×104
14 49.66 --- --- --- 3.072×10-4 0.8016 8.1×103
With SRB 1 155.8 17.77×10-4 0.46 1.192 0.61×10-4 1 1.2×103
4 117.9 2.646×10-4 1 69.08 26.39×10-4 0.6047 1.6×103
7 88.93 2.408×10-4 1 337.3 7.843×10-4 1 926
10 76.75 10.52×10-4 1 198.3 48.18×10-4 1 500
14 91.1 12.07×10-4 1 125.2 114.6×10-4 1 425
Table 1  Fitting electrochemical parameters for X70 steel after immersed in NS4 solutions with SRB and without SRB for different time
Fig.8  Polarization curves of X70 steel after immersion in NS4 solutions for different time
Condition Ecorr / mV Icorr / μAcm-2
Without SRB / 4 d -754.8 3.432
With SRB / 4 d -721.0 1.856
Without SRB / 14 d -813.9 21.151
With SRB / 14 d -856.0 30.650
Table 2  Fitting results of the potentiodynamic polarization curves
[1] Xia S H, Qi M Y, Li J X.Corrosion mechanism of MIC and influences on corrosion and protection of underground pipeline[J]. Total Corros. Control, 2005, 19(3): 27
[1] (夏双辉, 戚明友, 李建秀. 微生物腐蚀机理及对埋地管道腐蚀防护的影响[J]. 全面腐蚀防制, 2005, 19(3): 27)
[2] Zhang Y, Li Y.Microbiological corrosion and protection of oil and gas pipeline[J]. Equip. Environ. Eng., 2008, 5(5): 45
[2] (张燕, 李颖. 输油气管线的微生物腐蚀与防护[J]. 装备环境工程, 2008, 5(5): 45)
[3] Matilde F R, Junire P, Rosemary R.Cathodic polarization effect on sessile SRB growth and iron protection [A]. Corrosion/2006[C]. Las Vegas, 2006: 06526
[4] Graves J W, Sullivan E H.Internal corrosion in gas gathering systems and transmission lines[J]. Mater. Prot., 1996, 5: 33
[5] Zhao L C, Sun C, Zhang F B, et al.Kinetics analysis of naphthenic acid corrosion in atmospheric and vacuum equipment[J]. Corros. Sci. Prot. Technol., 2007, 19(1): 27
[5] (赵力成, 孙成, 张付宝等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2007, 19(1): 27)
[6] Zhu R X, Na J Y, Guo S W, et al.The corrosion mechanism of sulfate reducing bacteria[J]. J. Air Force Eng. Univ.(Nat. Sci. Ed.), 2000, 1(3): 10
[6] (朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理[J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 10)
[7] Souad B, Mohamed A L, Samir H.Effect of biofilm on naval steel corrosion in natural seawater[J]. J. Solid State Electrochem., 2011, 15(3): 525
[8] Fan Y J, Pi Z B, Hua P, et al.Microbial corrosion and its research methods[J]. Mater. Prot., 2001, 34(5): 28
[9] Jia S Y, Sun C, Wang J, et al.Research on corrosion of pipeline steel beneath disbanded coatings[J]. Corros. Sci. Prot. Technol., 2007, 19(3): 211
[9] (贾思洋, 孙成, 王佳等. 剥离涂层下管线钢腐蚀研究进展[J]. 腐蚀科学与防护技术, 2007, 19(3): 211)
[10] Liu W, Zhao Y L, Lu M X.Corrosion electrochemical characteristics of X60 pipeline steel in SRB and CO2 coexistence environment[J] Acta Phys.-Chim. Sin., 2008, 24(3): 393
[10] (柳伟, 赵艳亮, 路民旭. SRB和CO2共存环境中X60管线钢腐蚀电化学特征[J]. 物理化学学报,2008, 24(3): 393)
[11] Li J, Xu Z Y, Du Y L, et al.Influence of sulfate reducing bacteria on corrosive electrochemical behavior of copper alloy[J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 342
[11] (李进, 许兆义, 杜一立等. 硫酸盐还原菌对铜合金腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 342)
[12] Yuan H T, Gong A J, Gao J, et al.The research progress of SRB microbial corrosion and protection[J]. Chem. Bioeng., 2009, 5(1): 11
[12] (苑海涛, 弓爱君, 高瑾等. 硫酸盐还原菌的微生物腐蚀及其防护研究进展[J]. 化学与生物工程, 2009, 5(1): 11)
[13] Li F Z, An M Z.The effect of SRB biofilm in the process of stainless steel corrosion[J]. Mater. Prot., 2012, 45(1): 27
[13] (李付绍, 安茂忠. 硫酸盐还原菌生物膜在不锈钢腐蚀过程中的作用[J]. 材料保护, 2012, 45(1): 27)
[14] Liu T, Chen X, Zhang Y F, et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J. Chin. Soc. Corros. Prot., 2014, 34(2): 113
[14] (刘彤, 陈旭, 张艳飞等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 113)
[15] Chen X, Wu M.Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution[J]. Acta Metall. Sin., 2010, 46(8): 951
[15] (陈旭, 吴明. 外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响[J]. 金属学报, 2010, 46(8): 951)
[1] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[2] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[4] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[5] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[6] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[7] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[8] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[9] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[10] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[11] Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[12] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[13] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[14] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[15] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
No Suggested Reading articles found!