Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 357-362    DOI: 10.11902/1005.4537.2015.173
Current Issue | Archive | Adv Search |
Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites
Yanan NIE1,Hao SHEN2,Kunpeng GU1,Chengqi WANG1()
1. CCCC Shanghai Third Harbor Engineering Science & Technology Research Institute Co., Ltd., Shanghai 200032, China
2. Shanghai HongYun New Construction Materials Co., Ltd., Shanghai 201500, China
Download:  HTML  PDF(1745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The anti-corrosion performance of glass fiber reinforced plastic (GFRP) composites was evaluated by immersion test in 3.5% (mass fraction) sea salt solutions at 70 ℃ in terms of the decreasing trend of the pH value of the solution, the mass variation rate, and the bending strength retention rate of GFRP composites with time. While the surface morphology of the fractured surface of the composites, especially the glass fiber/resin interface before and after corrosion was examined by SEM. The concrete sample wrapped with GFRP composites was used to examine the time when Cl- penetrated through the GFRP layer. And, the life of resistance to Cl- penetration of 2 mm thick GFRP composites was predicted. Results showed that the life of resistance to Cl- penetration for the unsaturated ester based GFRP composite was about 30 a; while the epoxy vinyl ester based GFRP composite was about 70 a.

Key words:  glass fiber reinforced plastic      accelerated aging      resistance to Cl- penetration      life prediction     

Cite this article: 

Yanan NIE,Hao SHEN,Kunpeng GU,Chengqi WANG. Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 357-362.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.173     OR     https://www.jcscp.org/EN/Y2016/V36/I4/357

Fig.1  Effects of accelerated aging time on mass change
Fig.2  Effects of accelerated aging time on retention rate of bending strength
Fig.3  SEM images of fracture surfaces of 189 GFRP before (a) and after aging for 60 d (b) and 150 d (c)
Fig.4  SEM images of fracture surfaces of MFE-2 GFRP before (a) and after aging for 60 d (b) and 150 d (c)
Fig.5  Effect of natural aging time on bending strength of the UP GFRP[13]
Fig.6  Effect of accelerated aging time on bending strength of the UP GFRP
Immersion timed 189 GFRP wrapped MFE-2 GFRP wrapped
30 0 0
60 0 0
90 0.0015 0
120 0.0025 0
150 0.0037 0
180 0.0069 0
210 0.0097 0.0020
Table 1  Content of Cl- permeating from seawater into the concrete at different time (mass fraction / %)
[1] Wu J Q, Qian F F, Wang P, et al.Development of research on steel pipe pile durability and application[J]. J. Ningbo Eng. Univ. Technol., 2010, 22(3): 66
[1] (吴军强, 钱菲菲, 王鹏等. 钢管桩耐久性研究的发展与应用[J]. 宁波工程学院学报, 2010, 22(3): 66)
[2] Cheng X D, Sun L F, Cao Z F, et al.Cracking process analysis of concrete cover caused by non-uniform corrosion[J]. J. Chin. Soc. Corros. Prot., 2015, 35(3): 257
[2] (程旭东, 孙连方, 曹志烽等. 钢筋非均匀锈蚀导致的混凝土保护层锈胀开裂过程分析[J]. 中国腐蚀与防护学报, 2015, 35(3): 257)
[3] Chang A L, Song S Z.A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 247
[3] (常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32(3): 247)
[4] Wang D D, Wang C Q, Shi B L, et al.Field sampling, analysis and research on durability of large diameter cylindrical piles[J]. Chin. Harbor Eng., 2008, (1): 39
[4] (汪冬冬, 王成启, 时蓓玲等. 大管桩现场取样分析与耐久性研究[J]. 中国港湾建设, 2008, (1): 39)
[5] Cai R H.Discussion on design useful life of 100 years of piled wharfs[J]. Chin. Harbor Eng., 2009, (2): 21
[5] (蔡锐华. 试论高桩码头设计使用年限100 年[J]. 中国港湾建设, 2009, (2): 21)
[6] Bian L, Xiao J, Zeng J, et al.Effects of seawater immersion on water absorption and mechanical properties of GFRP composites[J]. J. Compos. Mater., 2012, 46(25): 3151
[7] Berketis K, Tzetzis D, Hogg P J.The influence of long term water immersion ageing on impact damage behaviour and residual compression strength of glass fibre reinforced polymer (GFRP)[J]. Mater. Des., 2008, 29(7): 1300
[8] Hiroaki A, Yoshikazu M, Hiromasa N.Long-term exposure test for corrosion control of steel pipe piles [A]. Coast Technology Research Center Symposium[C]. Tokyo, 2006
[9] Lu X F.Anti-corrosion technology of PHC piles of Donghai bridge [A]. The 14th Asia Pacific Corrosion Control Meeting Modern Bridge Structure Anticorrosion Technology BBS Symposium[C]. Shanghai, 2007
[9] (陆旭峰. 东海大桥PHC管桩防腐蚀技术 [A]. 第十四届亚太腐蚀控制会议现代桥梁结构防腐蚀技术论坛文集[C]. 上海, 2007)
[10] Huang G.Behaviors of glass fiber/unsaturated polyester composites under seawater environment[J]. Mater. Des., 2009, 30(4): 1337
[11] Dai H, Zhou R P.The molecular design of alkali-resisting epoxy vinyl ester resins[J]. Fiber Reinf. Plast./Compos., 2014, (2): 59
[11] (戴华, 周润培. 耐碱环氧乙烯基酯树脂的分子设计[J]. 玻璃钢/复合材料, 2014, (2): 59)
[12] Assarar M, Scida D, El Mahi A, et al.Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres[J]. Mater. Des., 2011, 32(2): 788
[13] Zhou J.Properties research of GFRP composites after natural aging of 21 years[J]. Fiber Reinf. Plast./Compos., 1995, (4): 1
[13] (周杰. 21年玻璃钢自然老化性能研究[J]. 玻璃钢/复合材料, 1995, (4): 1)
[1] Haixia LIU,Xuequn CHENG,Xiaogang LI,Kui XIAO,Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[2] Xinsheng ZHANG,Naining CAO,Yayun LI. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
No Suggested Reading articles found!