Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 197-204    DOI: 10.11902/1005.4537.2015.089
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of High Nitrogen Austenitic Stainless Steels
Xinqiang WU1(),Yao FU1,Wei KE1,Song XU2,Bing FENG2,Botao HU2,Jiazheng LU2
1. Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
Download:  HTML  PDF(1120KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance of Ni free and Mn alloyed high nitrogen austenitic stainless steels (HNSSs), including uniform corrosion, intergranular corrosion, crevice corrosion, pitting corrosion and repassivation,was investigated by means of immersion test and electrochemical test. The effect of cold work and sensitization treatment on the microstructure, characteristic of passive film and corrosion resistance of the HNSSs was examined. It was found that the solution-annealed (SA) HNSSs had much weaker resistance to uniform- and intergranular-corrosion compared to the SA 316LSS. The sensitization-treatment (ST) hardly affected the uniform corrosion resistance of all the steels, but resulted in rapid degradation of the resistance to intergranular-corrosion, especially for the Mo free HNSSs. The SA HNSSs had a better resistance to crevice- and pitting-corrosion than the SA 316LSS, in particular the Mo bearing HNSSs. The ST degraded the resistance to crevice- and pitting-corrosion of the HNSSs. The cold work degraded the pitting-corrosion resistance of the HNSSs in chloride-containing solutions through thinning the passive film and decreasing the stable oxides in the passive film, but it improved the repassivation ability of the HNSSs. The ST-induced precipitation of χ phase degraded the corrosion resistance and repssivation ability of the HNSSs, and such degradation became aggravated with increasing cold work degree. Furthermore, the relevant corrosion mechanism is also discussed.

Key words:  high nitrogen stainless steel      cold work      sensitization      passive film      repassivation     
Received:  27 May 2015     

Cite this article: 

Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 197-204.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.089     OR     https://www.jcscp.org/EN/Y2016/V36/I3/197

Steel Cr Ni Mn Mo Si C S P Al N Fe
HNSS A 19.80 --- 18.40 --- --- 0.040 0.012 0.015 0.02 0.82 Bal.
HNSS B 19.07 --- 18.84 2.20 --- 0.043 0.012 0.015 0.02 0.77 Bal.
HNSS C 18.40 --- 15.80 2.19 0.24 0.040 0.005 0.017 0.02 0.66 Bal.
316LSS 16.38 10.2 1.02 2.36 0.40 0.019 0.06 0.033 --- --- Bal.
Table 1  Chemical compositions of HNSSs and 316LSS used in the present work (mass fraction / %)
Fig.1  Microstructures of HNSS C treated under different conditions: (a) solution annealing+8% cold work; (b) solution annealing+30% cold work; (c) solution annealing+30% cold work+sensitization;(d) TEM morphology of χ phase under 30% cold work+sensitization
Fig.2  Mass loss rate of uniform corrosion (a), intergranular corrosion rate (b), crevice corrosion rate (c) andpitting corrosion rate (d) of HNSSs
Fig.3  Intergranular corrosion morphologies of sensitized HNSS C (a) and 316LSS (b), crevice corrosion morphologies of solution-annealed HNSS C (c) and 316LSS (d), pitting corrosion morphologies of sensitized HNSS C (e) and 316LSS (f)
Fig.4  Polarization curves of HNSS C after solution-annealing+cold work (a) and cold work+sensitization (b), curves of critical pitting potential vs cold deformation (c)
Fig.5  Nyquist plots (a) and equivalent circuit (b) of cold worked HNSS C
Fig.6  Depth profiles of the concentrations of N (a), O (b), Cr (c) and Mo (d) in the passive film formed in 3.5%NaCl solution
Condition Cold work level Rsol / Ωcm2 Q / Ω-1sncm-2 n R1 / Ωcm2 C / Fcm-2 R2 / Ωcm2
Solution-annealed,3.5%NaCl 8% 7.62 1.14×10-5 0.88 3.56 6.53×10-6 6.48×105
30% 7.33 1.20×10-5 0.83 4.01 7.79×10-6 2.53×105
60% 6.92 2.63×10-5 0.92 16.50 3.39×10-6 2.22×105
Sensitized,3.5%NaCl 8% 7.57 1.37×10-5 0.76 4.83 8.43×10-6 1.65×105
30% 6.17 8.21×10-5 0.85 10.05 1.26×10-5 1.36×105
60% 6.26 9.51×10-5 0.78 3.02 1.65×10-5 1.29×105
Table 2  Equivalent circuit parameters for 8%, 30% and 60% cold deformed HNSS C
Cold work level Surface layer (1 nm) Middle layer (3 nm) Inner layer (7 nm)
8% non-sensitized Cr2O3 Cr-O Cr-O
Fe3O4, Fe2O3 Fe3O4 Fe3O4
Mn2O3 MnO MnO
60% non-sensitized Cr-O Cr-O Cr-O
Fe3O4, Fe(OH)O Fe3O4 Fe3O4
Mn2O3 MnO MnO
60% sensitized Cr-O Fe3O4 Fe3O4
Fe3O4, Fe(OH)O MnO
MnO
Table 3  Main oxides in passive films formed on 8% and 60% cold deformed HNSS C
Fig.7  Cyclic polarization curves for the solution-annealed,cold worked and cold-worked sensitized HNSS C in 3.5%NaCl solution
[1] Uggowitzer P J, Magdowski R, Speidel M O.Nickel free high nitrogen austenitic steels[J]. ISIJ Int., 1996, 36(7): 901
[2] Speidel M O, Speidel H J.Nitrogen containing austenitic stainless steels [A]. Proceedings of International Conference on High Nitrogen Steels 2006[C]. Jiuzhaigou: 2006
[3] Menzel J, Kirschner W, Stein G.High nitrogen containing Ni-free austenitic steels for medical applications[J]. ISIJ Int., 1996, 36(7): 893
[4] Flis J.Corrosion and passivation of plasma nitrided stainless steels[J]. Surf. Eng., 2010, 26: 103
[5] Flis F, Zakroczymski T.Corrosion and passivation of iron and its nitrided layer in borate buffer[J]. Electrochim. Acta, 2009, 54: 1810
[6] Baba H, Kodama T, Katada Y.Role of nitrogen on the corrosion behavior of austenitic stainless steels[J]. Corros. Sci., 2002, 44(10): 2393
[7] Fu Y, Wu X Q, Han E-H, et al.Effects of nitrogen on the passivation of high nitrogen stainless steels in acidic chloride solutions[J]. Electrochim. Acta, 2009, 54: 4005
[8] Baba H, Katada Y.Effect of nitrogen on crevice corrosion in austenitic stainless steel[J]. Corros. Sci., 2006, 48(9): 2510
[9] Wu X Q, Xu S, Huang J B, et al.Uniform and intergranular corrosion behavior of nickel free and manganese alloyed high nitrogen stainless steels[J]. Mater. Corros., 2008, 59(8): 676
[10] Brigham R J, Tozer E W.Localized corrosion-resistance of Mn-substituted austenitic stainless steels effect of molybdenum and chromium[J]. Corrosion, 1976, 32(7): 274
[11] Lim Y S, Kim J S, Ahn S J, et al.The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20wt.%Mn-substituted type 316L stainless steels[J]. Corros. Sci., 2001, 43(1): 53
[12] Tzaneva B R, Fachikov L B, Raicheff R G.Pitting corrosion of Cr-Mn-N steel in sulphuric acid media[J] J. Appl. Electrochem., 2006, 36(3): 347
[13] Lu Y C, Bandy R, Clayton C R, et al.Surface enrichment of nitrogen during passivation of a highly resistant stainless steel[J]. J. Electrochem. Soc., 1983, 130(8): 1774
[14] Clayton C R, Halada G P, Kearns J R.Passivity of high-nitrogen stainless alloys: the role of metal oxyanions and salt films[J]. Mater. Sci. Eng., 1995, A198(1/2): 135
[15] Ha H Y, Lee T H, Oh C S, et al.Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe-18Cr-10Mn alloys[J]. Scripta Mater., 2009, 61: 121
[16] Olefjord I, Clayton C R.Surface-composition of stainless-steel during active dissolution and passivation[J]. ISIJ Int., 1991, 31(2): 134
[17] Barbucci A, Cerisola G, Cabot P L.Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media[J]. J. Electrochem. Soc., 2002, 149: 534
[18] Hoar T P, Jacobs W R.Breakdown of passivity of stainless steel by halide ions[J]. Nature, 1967, 216: 1299
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[4] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[5] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[6] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[7] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[8] Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[9] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[10] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[11] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[12] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[13] Chao XIANG,Jiazhen WANG,Huameng FU,En-Hou HAN,Haifeng ZHANG,Jianqiu WANG,Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[14] MA Cheng,PENG Qunjia,HAN En-Hou,KE Wei. Review of Stress Corrosion Cracking of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[15] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
No Suggested Reading articles found!