Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 191-196    DOI: 10.11902/1005.4537.2015.091
Orginal Article Current Issue | Archive | Adv Search |
Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines
Xiao TANG(),Chuntao SHI,Guang CAO,Yan LI
College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Download:  HTML  PDF(379KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The direct cause for the explosion accident occurred by Dong Huang pipeline is that the corrosion of pipeline was enhanced by coastal soil, which in turn resulted in thinning and then cracking of the pipe. Because localized corrosion cracking in coastal soils is a serious threat to the integrity and security for the pipeline, the effect of the coastal soil environment on localized corrosion for oil and gas pipelines was analyzed systematically. Typical corrosion environmental characteristics were acquired and then analyzed firstly for the specified coastal soil, which in general is rather different from the terrestrial soil and seabed soil distinctly. The coastal soil is characterized as a mixture of gas/liquid/solid multi-phases with high salt- and water-content and good air aeration, while it experiences dry-wet cycles periodically. The effect of the coastal soil environment on the initiation and propagation of localized corrosion for oil and gas pipelines is discussed. Finally, the trends and difficulties of the study in oil and gas pipeline localized corrosion are analyzed, and in the end, a scheme of micro-e electrochemical study is peculiarly prospected.

Key words:  coastal pipeline engineering      coastal soil environment      oil and gas pipeline      localized corrosion     
Received:  13 May 2015     

Cite this article: 

Xiao TANG,Chuntao SHI,Guang CAO,Yan LI. Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 191-196.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.091     OR     https://www.jcscp.org/EN/Y2016/V36/I3/191

[1] State Council "11.22" Accident Investigation Team. Investigation report for “11.22” leakage explosion accident of Sinopec Dongying-Huangdao oil pipeline in Qingdao city, Shandong province [R]. 2014
[1] (国务院山东省青岛市“11.22”中石化东黄输油管道泄漏爆炸特别重大事故调查组. 山东省青岛市“11.22”中石化东黄输油管道泄漏爆炸特别重大事故调查报告 [R]. 2014)
[2] Cao C N.Natural Corrosion of China's Materials [M]. Beijing: Chemistry Industry Press, 2005: 449
[2] (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社,2005: 449)
[3] Weng Y J, Li X Y, Yang J P.A study on soil corrosion models in dagang oilfield[J]. Acta Petrol. Sin., 1996, 17(3): 137
[3] (翁永基, 李相怡, 杨建平. 大港油田土壤腐蚀模型研究[J]. 石油学报, 1996, 17(3): 137)
[4] Li X Y, Weng Y J, Zhang Y, et al.Assessment of soil corrosiovity in chegndao beach[J]. Oil Gas Storage Transp., 1999, 18(2): 50
[4] (李相怡, 翁永基, 张勇等. 埕岛滩海土壤腐蚀性评价[J]. 油气储运, 1999, 18(2): 50)
[5] Qian X K, Jiang X F.2014 Domestic and International Oil and Gas Industry Development Report [M]. Beijing: Petroleum Industry Pre-ss, 2015
[5] (钱兴坤, 姜学峰. 2014年国内外油气行业发展报告 [M]. 北京: 石油工业出版社, 2015)
[6] Yuan Y, Gao Q S, Liu Y.Gas pipeline corrosion analysis and countermeasures[J]. Oil-Gas field Surf. Eng., 2011, 30(8): 4
[6] (袁英, 高强生, 刘义. 天然气管道腐蚀分析与对策[J]. 油气田地面工程, 2011, 30(8): 4)
[7] Li G F, Yang W.Corrosion and protection of buried important pipelines[J]. Corros. Prot., 2009, 30(9): 620
[7] (李光福, 杨武. 埋地重要管线的腐蚀与防护[J]. 腐蚀与防护, 2009, 30(9): 620)
[8] Engineering Design Guide Editorial Board. Offshore Oil Engineering Design Guide: Offshore Oil Engineering Pipeline Design [M]. Beijing: Petroleum Industry Press, 2007: 249
[8] (《海洋石油工程设计指南》编委会. Offshore海洋石油工程设计指南: 海洋石油工程海底管道设计 [M]. 北京: 石油工业出版社, 2007: 249)
[9] Zhang X L.Corrosion protection, thermal insulation and weight coating of subsea pipeline[J]. Anticorros. Insul. Technol., 2009, 17(2): 4
[9] (张晓灵. 海底管道防腐保温及配重技术[J]. 防腐保温技术, 2009, 17(2): 4)
[10] Chen Y, Fei J Y, Wan B H, et al.Stress corrosion crack of buried X80 oil pipeline and its protection[J]. Mater. Heat Treat., 2011, 40(22): 51
[10] (陈叶, 费敬银, 万冰华等. 埋地X80石油管道的应力腐蚀与防护[J]. 热加工工艺, 2011, 40(22): 51)
[11] Robert L A, Neha R, Kip O F, et al.Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen[J]. Int. J. Fatigue, 2014, 59: 262
[12] Fassina A P, Brunella M F, Lazzari L, et al.Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels[J]. Eng. Fract. Mech., 2013, 103: 10
[13] Contreras A, Hernández S L, Orozco-Cruz R, et al.Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution[J]. Mater. Design, 2012, 35: 281
[14] Dong C F, Liu Z Y, Li X G, et al.Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. Int. J. Hydrogen Energy, 2009, 34(24): 9879
[15] Mohtadi-Bonab M A, Szpunar J A, Collins L, et al. Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments[J]. Int. J. Hydrogen Energy, 2014, 39(11): 6076
[16] Jia Y Z, Wang J Q, Han E-H.Stress corrosion cracking of X80 pipeline steel in near-neutral pH environment under constant load tests with and without preload[J]. J. Mater. Sci. Technol., 2011, 27(11): 1039
[17] Tang X, Cheng Y F.Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochim. Acta, 2009, 54(5): 1499
[18] Wang Z Y, Wang J Q, Han E-H, et al.Effect of mechanical factors on SCC initiation of pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28(5): 282
[18] (王志英, 王俭秋, 韩恩厚等. 力学因素对管线钢应力腐蚀开裂裂纹萌生的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 282)
[19] Lu B T, Luo J L, Norton P R, et al.Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Mater., 2009, 57(1): 41
[20] Xu L Y, Cheng Y F.Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corros. Sci., 2012, 64: 145
[21] Sun Q L, Cao B, Wu M S.Effect of fluctuant load frequency on stress corrosion cracking behavior of X70 steel welded joint[J]. Heat Treat. Met., 2008, 33(12): 28
[21] (孙齐磊, 曹备, 吴荫顺. 波动频率对X70钢焊接接头应力腐蚀行为的影响[J]. 金属热处理, 2008, 33(12): 28)
[22] Liu Z Y, Wang C P, Du C W, et al.Effect of applied potential on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution[J]. Acta Metall. Sin., 2011, 47(11): 1434
[22] (刘志勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2011, 47(11):1434)
[23] Liu Z Y, Li X G, Cheng Y F.Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization[J]. Electrochim. Acta, 2012, 60: 259
[24] Zhou J, Chen Y F, Li X, et al.A review of the study on the damage mechanism of corroded submarine pipeline under complex loadings[J]. Ocean Eng., 2008, 26(1): 127
[24] (周晶, 陈严飞, 李昕等. 复杂荷载作用下海底腐蚀管线破坏机理研究进展[J]. 海洋工程, 2008, 26(1): 127)
[25] Li J, Wang H B, Li Y.Main factors influencing marine pipeline service life and proposal of countermeasures[J]. Petrol. Eng. Constr., 2007, 33(2): 35
[25] (李军, 王洪彬, 李燕. 影响海底管道寿命的主要因素及防范建议[J]. 石油工程建设, 2007, 33(2): 35)
[26] Machuca L L, Bailey S I, Gubner R, et al.Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater[J]. Corros. Sci., 2013, 67: 242
[27] Chaves I A, Melchers R E.Pitting corrosion in pipeline steel weld zones[J]. Corros. Sci., 2011, 53(12): 4026
[28] Gomes W J S, Andr'e T B. Optimal inspection and design of onshore pipelines under external corrosion process[J]. Struct. Safety, 2014, 47: 48
[29] Ferreira C A M, Ponciano J A C, Vaitsman D S, et al. Evaluation of the corrosivity of the soil through its chemical composition[J]. Sci. Total Environ., 2007, 388(1-3): 250
[30] Meresht E S, Farahani T S, Neshati J.Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline[J]. Eng. Fail. Anal., 2011, 18(3): 963
[31] Lee S H, Oh W K, Kim J G.Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part II. Application to the evaluation of polyethylene and coal-tar enamel coatings[J]. Prog. Org. Coat., 2013, 76(4): 784
[32] Fu A Q, Tang X, Cheng Y F.Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe[J]. Corros. Sci., 2009, 51(1): 186
[33] Fu A Q, Cheng Y F.Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe[J]. Corros. Sci., 2009, 51(4): 914
[34] Xu L Y, Cheng Y F.Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain[J]. Int. J. Pres. Ves. Pip., 2012, 89: 75
[35] Chen W, Boven G van, Rogge R. The role of residual stress in neutral pH SCC of pipeline steels Part II: Crack dormancy[J]. Acta Mater., 2007, 55(1): 43
[36] Tang X, Cheng Y F.Localized dissolution electrochemistry at surface irregularities of pipeline steel[J]. Appl. Surf. Sci., 2008, 254(16): 5199
[37] Eslami A, Fang B, Kania R, et al.Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment[J]. Corros. Sci., 2010, 52(11): 3750
[38] Tang X, Cheng Y F.Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corros. Sci., 2011, 53(9): 2927
[1] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[2] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[3] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[4] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[5] Xinsheng ZHANG,Naining CAO,Yayun LI. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[6] Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[7] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[8] . Chemical Changes Within Occluded Cell for Localized Corrosion of Iron Artifacts in Chloride Solution[J]. 中国腐蚀与防护学报, 2004, 24(6): 364-367 .
[9] Dayang Liu; Kaijin Wei; Wenjun Li. INFLUENCE OF ENVIRONMENTAL FACTORS IN YULIN AREA OFTHE SOUTH CHINA SEA ON LOCALIZED CORROSION OF STEELS[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .
[10] Chunchun Xv; Xiaomei Wu. THE INFLUENCE OF THE LOCAL CORROSION OF 304 STAINLESS STEEL BY ANIONS[J]. 中国腐蚀与防护学报, 2003, 23(3): 129-133 .
[11] Zehua Dong; Xingpeng Guo; Jiashen Zheng. FEATURES OF ECN OF LOCALIZED CORROSION FOR 16Mn STEEL[J]. 中国腐蚀与防护学报, 2002, 22(5): 290-294 .
[12] Guigang Hang. FACTORS INFLUENCING PROTECTIVE BEHAVIOR OF RUST-PREVENTING OIL AND THE CORROSION UNDER OIL FILM[J]. 中国腐蚀与防护学报, 1999, 19(3): 179-184 .
[13] Tang Zilong;Song Shizhe(Dept. of Materials; Tianjin University). AN ELECTROCHEMICAL INVESTIGATION ON THE INHIBITION EFFECT OF PIPERIDINE FOR TYPE 304 STAINLESS STEEL IN NaCl MEDIA[J]. 中国腐蚀与防护学报, 1996, 16(2): 94-100.
[14] Liu Youping; Zhou Peijun; Zhang Jie; Zuo Jingyi(Beijing University of Chemical Technology). EFFECT OF EXTERNAL POTENTIAL ON CORROSION BEHAVIOUR WITHIN PROPAGATING PITS OR CRACKS[J]. 中国腐蚀与防护学报, 1995, 15(1): 43-48.
No Suggested Reading articles found!