Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 515-522    DOI: 10.11902/1005.4537.2013.206
Current Issue | Archive | Adv Search |
Effect of Ti Addition on Microstructure and Corrosion Property of Zn-5Al Alloy
LIU Zili(), LIU Xiqin, WANG Huaitao, HU Jindong, HOU Zhiguo
College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download:  HTML  PDF(6701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion properties of Zn-5Al-xTi alloy have been investigated by OM, SEM, EDS and electrochemical tests etc. The results show that a small amount of Ti addition in Zn-5Al alloy refines the primary β-Zn phase and increases the percentage of the eutectic structure. With the addition of 0.15%Ti, almost all β-Zn phase disappears in the Zn-5Al-0.15Ti alloy and therewith which exhibits an entire eutectic microstructure. With increasing the Ti content to 0.2%, a new Al-Ti-Zn ternary phase appears in the alloy. The addition of Ti increases the corrosion resistance of Zn-5Al alloy. Among others, the corrosion rate and corrosion current density of Zn-5Al-0.15Ti alloy reach a minimum of 0.85 μgcm-2d-1 and 1.403 μA/cm2 respectively, while the impedance at high frequency or the diffusion impedance at low frequency all reach a maximum. Uniform corrosion occurs for the Zn-5Al-0.15Ti alloy with entire eutectic microstructure.

Key words:  Ti      Zn-5Al alloy      corrosion property     
ZTFLH:  TG174  

Cite this article: 

LIU Zili, LIU Xiqin, WANG Huaitao, HU Jindong, HOU Zhiguo. Effect of Ti Addition on Microstructure and Corrosion Property of Zn-5Al Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 515-522.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.206     OR     https://www.jcscp.org/EN/Y2014/V34/I6/515

Alloy Al Ti Zn
1 5 --- Bal.
2 5 0.1 Bal.
3 5 0.15 Bal.
4 5 0.2 Bal.
Table 1  Nominal compositions of Zn-Al alloys
Fig.1  Metallographic structures of Zn-5Al (a), Zn-5Al-0.1Ti (b), Zn-5Al-0.15Ti (c) and Zn-5Al-0.2Ti (d) alloys
Fig.2  SEM image (a) and EDS results (b) of Zn-5Al-0.2Ti alloy
Fig.3  Corrosion rates of Zn-5Al-xTi alloys
Fig.4  Variations of the corrosion potential Ecorr as a function of exposure time for Zn-5Al-xTi alloys in 3.5%NaCl solution
Fig.5  Polarization curves of Zn-5Al-xTi alloys in 3.5% NaCl solution
Alloy Icorr
μA/cm2
bc
mV/dec
ba
mV/dec
Zn-5Al 6.4 56 34
Zn-5Al-0.1Ti 3.6 38 28
Zn-5Al-0.15Ti 1.1 23 14
Zn-5Al-0.2Ti 1.5 31 25
Table 2  Values of Icorr, ba and bc, deduced from polarization measurements
Fig.6  Representative Nyquist diagrams of Zn-5Al (a), Zn-5Al-0.1Ti (b), Zn-5Al-0.15Ti (c) and Zn-5Al-0.2Ti (d) alloys after exposure in 3.5%NaCl solution for different time
Fig.7  Variations of RH as a function of time for Zn-5Al-xTi alloys during immersion in 3.5%NaCl solution
Fig.8  Variations of Y0 as a function of exposure time for Zn-5Al-xTi alloys during immersion in 3.5%NaCl solution
Fig.9  Corrosion morphologies of Zn-5Al alloy immersed in 3.5%NaCl solution for 120 h (a), 240 h (b), 360 h (c) and Zn-5Al-0.15Ti alloy for 120 h (d), 240 h (e), 360 h (f)
Fig.10  SEM images of Zn-5Al (a), Zn-5Al-0.1Ti (b), Zn-5Al-0.15Ti (c) and Zn-5Al-0.2Ti (d) alloys after exposure in 3.5%NaCl solution for 480 h
[1] Lu J T, Chen J H, Xu Q Y, et al. Influence of adding Ni in zinc bath on the microstructure of hot dip galvanized coating[J]. Chin. J. Nonferrous Met., 1996, 6(4): 87-100
(卢锦堂, 陈锦虹, 许乔瑜等. 锌浴加镍对热镀锌层组织的影响[J]. 中国有色金属学报, 1996, 6(4): 87-100)
[2] Che C S, Lu J T, Chen J H, et al. Interpretation model of sandelin effect mechanism in hot dip galvanizing[J]. Mater. Prot., 2004, 37(8): 26-28
(车淳山, 卢锦堂, 陈锦虹等. 热镀锌中圣德林效应微观机理的解释模型[J]. 材料保护, 2004, 37(8): 26-28)
[3] Wang H T, Liu Z L, Xu W L, et al. Influence of Al contents on the corrosion performance of hot-dip zinc alloy[J]. Corros. Prot., 2013, 34(2): 1-5
(王怀涛, 刘子利, 徐文龙等. 铝含量对热浸镀锌合金耐蚀性的影响[J]. 腐蚀与防护, 2013, 34(2): 1-5)
[4] Liu Z L, Xu W L, Wang H T, et al. An Zn-Al-Ti-Re alloy and the manufacturing method for hot-dip zinc-plated steel [P]. China: CN201110088261.X, 2011-08-24
(刘子利, 徐文龙, 王怀涛等. 一种用于热浸镀钢板的锌-铝-钛-稀土合金及其制备方法 [P]. 中国专利: CN201110088261.X, 2011-08-24)
[5] Wei S C, Zhu X F, Wei X J. Effects of aluminum and titanium on hot galvanizing coating[J]. Mater. Prot., 2003, 36(9): 28-30
(魏世承, 朱晓飞, 魏绪钧. 铝和钛对热镀锌层的影响[J].材料保护, 2003, 36(9): 28-30)
[6] Gui Y. Electrochemical behavior of hot-dip zinc-titanium alloy galvanized steel sheet[J]. Surf. Technol., 2008, 37(5): 33-35
(桂艳. 热浸锌-钛合金镀层钢板的电化学行为[J]. 表面技术, 2008, 37(5): 33-35)
[7] Culcasi J D, Sere P R, Elsner C I, et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process[J]. Surf. Coat. Technol., 1999, 122(1): 21-23
[8] García F, Salinas A, Nava E. The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al-Zn coatings on steel strips[J]. Mater. Lett., 2006, 60: 775-778
[9] Zhao X O. Experimental study on rare earth to improve the corrosion resistance of zinc base alloy[J]. J. Chin. Rare Earth Soc., 199210: 243-246
(赵显欧. 稀土改善锌基合金抗蚀性的实验研究[J]. 中国稀土学报, 1992, 10: 243-246)
[10] Jin H M, Li Y, Liu H L, et al. Study on the behavior of additives in steel hot dip galvanizing by DFT calculations[J]. Chem. Mater., 2000, 12: 1879-1883
[11] Vassilev G P, Liu X J, Ishida K. Reaction kinetics and phase diagram studies in the Ti-Zn system[J]. J. Alloys Compd., 2004, 75(3): 162-170
[12] Delsante S, Ghosh G, Borzone G. A calorimetric study of alloys along the Ti(Zn, Al)3 section[J]. Calphad: Comput. Coupling Phase Diagrams Thermochem., 2009, 33: 50-54
[13] Souto R M, Fernandez-Merida L, Gonzalez S, et al. Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J]. Corros. Sci., 2006, 48(5): 1182-1192
[14] Hamlaoui Y, Pedraza F, Tifouti L. Corrosion monitoring of galvanized coatings through electrochemical impedance spectroscopy[J]. Corros. Sci., 2008, 50(6): 1558-1566
[15] Rosalbino F, Angelini E, Maccio D, et al. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution[J]. Electrochim. Acta, 2009, 54(4): 1204-1209
[16] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere[J]. Corrosion, 1992, 48(10): 854-863
[17] Chen C F, Lu M X, Zhao G X, et al. Electrochemical characteristics of CO2 corrosion of well tube steels with corrosion scales[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 140-143
(陈长风, 路民旭, 赵国仙等. 腐蚀产物膜覆盖条件下油套管钢CO2 腐蚀电化学特征[J]. 中国腐蚀与防护学报, 2003, 23(3): 140-143)
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[4] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[5] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[6] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[9] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[10] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[11] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[13] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[15] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
No Suggested Reading articles found!