Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 507-514    DOI: 10.11902/1005.4537.2013.215
Current Issue | Archive | Adv Search |
Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties
XU Hongmei, LIU Wei(), CAO Lixin, SU Ge, GAO Rongjie
Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(3848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZnO/TiO2 composite film was prepared on the surface of 304 stainless steel by sol-gel technique and spin coating method. The phase composition and microstructure of the as-prepared ZnO/TiO2 composite film was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The effect of the preparation procedure and calcination temperature on the photoelectric property has been investigated and the photocathodic protection performance of such composite film for 304 stainless steel was also evaluated in 3.0%NaCl solution by using the electrochemical method. The results indicate that the composite film prepared by two-step procedure with proper calcination temperature exhibits excellent photo-electrochemical performance. The photocathodic protection property of ZnO/TiO2 composite film for 304 stainless steel under UV light illumination is significantly superior to that of pure TiO2 film and ZnO film respectively.

Key words:  304 stainless steel      ZnO/TiO2 composite film      photo-electrochemical      photocathodic protection     
ZTFLH:  TG134.1  
  TG174.4  

Cite this article: 

XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 507-514.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.215     OR     https://www.jcscp.org/EN/Y2014/V34/I6/507

Fig.1  XRD patterns of ZnO film (a) and ZnO/TiO2 composite film (b) heated at various temperatures
Fig.2  SEM images of the surface (a~c) and the fragment (d~f) of ZnO film heated at 400 ℃ (a, d), 500 ℃ (b, e) and 600 ℃ (c, f)
Fig.3  SEM images of the ZnO/TiO2 composite film (a), the fracture morphology of the ZnO/TiO2 composite film (b), the enlarged view of middle layer (c) and bottom layer (d)
Fig.4  Varitions of the open circuit potential with time for the ZnO/TiO2 composite films parpared in the different composite modes: (a) ZnO film, (b) TiO2 film, (c) ZnO/TiO2 mixing film, (d) ZnO/TiO2 composite film prepared by layered coating and one-step heating method, (e) ZnO/TiO2 composite film prepared by layered coating and double-step heating method
Fig.5  Open circle potentials (a) and current density (b) of the ZnO/TiO2 composite film as a function of the annealing temperature of ZnO
Fig.6  Open circle potentials (a) and the current density (b) of the ZnO/TiO2 composite film as a function of the annealing temperature
Fig.7  Polarization curves of 304SS without and with double pure TiO2 layers or ZnO/TiO2 composite film in 3.0%NaCl solution in the presence and absence of UV illumination
Electrode Rs / Ω Qf Rf / Ω Qdl Rt / Ω
Yo n Yo n
Bare 304 SSa 5.72 1.19×10-4 0.822 2.42×103 3.64×10-5 0.989 6.37×104
2Ta 8.06 1.13×10-4 0.534 9.31×104 5.97×10-5 0.843 5.65×105
Ti/Zna 6.29 1.17×10-4 0.865 3.94×103 4.16×10-5 0.827 3.09×105
2Tb 7.04 2.07×10-5 0.797 9.16 2.20×10-5 0.790 1.20×104
Ti/Znb 5.04 1.96×10-5 0.693 9.66×101 8.13×10-5 0.980 6.37×103
Table 1  Fitting impedance parameters of Nyquist plots using the equivalent circuit
Fig.8  Nyquist plots of electrodes samples in the absence and presence of UV light in 3.0%NaCl solution and its corresponding equivalent circuit
[1] Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc., 2001, 148(1): B24-B28
[2] Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. J. Phys. Chem., 2002, 106(18)B: 4775-4781
[3] Shen G X, Chen Y C, Lin C J. Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films, 2005, 489(1/2): 130-136
[4] Shen G X, Chen Y C, Lin L, et al. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals[J]. Electrochim. Acta, 2005, 50(25/26): 5083-5089
[5] Lei C X, Zhou H, Feng Z D, et al. Low-temperature liquid phase deposited TiO2 films on stainless steel for photogenerated cathodic protection applications[J]. Appl. Surf. Sci., 2011, 257(16): 7330-7334
[6] Shen G X, Chen Y C, Li J, et al. Preparation of the TiO2-SnO2 composite films and its function of photo generated cathodic protection of 316L stainless steel[J]. J. Chin. Soc. Corros. Prot., 2006, 26(2): 109-114
(沈广霞, 陈艺聪, 李静等. 纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 109-114)
[7] Tatsuma T, Saitoh S, Ohko Y, et al. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J]. Chem. Mater., 2001, 13(9): 2838-2842
[8] Shen G X, Chen Y C, Lin C J. Preparation of nano TiO2-V2O5 composite coating and its functions in corrosion protection of metals[J]. Acta Phys.-Chim. Sin., 2005, 21(5): 485-489
(沈广霞, 陈艺聪, 林昌健. TiO2-V2O5纳米复合膜的制备及防腐蚀性能[J]. 物理化学学报, 2005, 21(5): 485-489)
[9] Liu W, Wang Y G, Cao L X, et al. Preparation of MWCNTS/TiO2 composite film and its application of photocathodic property for stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 485-490
(柳伟, 王永刚, 曹立新等. 多壁纳米碳管/TiO2复合薄膜的制备与光阴极保护性能研究[J]. 中国腐蚀与防护学报, 2012, 32(6): 485-490)
[10] Guo X Q, Liu W, Cao L X, et al. Graphene incorporated nanocrystall-ine TiO2 films for the photocathodic protection of 304 stainless steel[J]. Appl. Surf. Sci., 2013, 283(15): 498-504
[11] Coleman V A, Jagadish C. Zinc Oxide Bulk, Thin Films and Aano- structure [M]. London: Elsevier, 2006, 1-20
[12] Yan X D, Zou C W, Gao X D, et al. ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity[J]. J. Mater. Chem., 2012, 22(12): 5629-5640
[13] Mane R S, Lee W J, Pathan H M, et al. Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells[J]. J. Phys. Chem., 2005, 109(51)B: 24254-24259
[14] Aal A A, Barakat M A, Mohamed R M. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol[J]. Appl. Surf. Sci., 2008, 254(15): 4577-4583
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[4] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[5] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[7] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[8] Yingjun AI,Nan DU,Qing ZHAO,Shixin HUANG,Liqiang WANG,Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[9] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[10] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[11] TIAN Wenming, DU Nan, ZHAO Qing. ELECTRONIC SPECKLE PATTERN INTERFEROMETRY MEASUREMENT OF 304 STAINLESS STEEL PITTING POTENTIAL[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.
[12] LI Ji, ZHAO Lin, LI Bowen,ZHENG Liqun, HAN En-Hou. ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[13] WANG Hongfen, WANG Zhiqi, HONG Haixia, CHEN Shougang,YIN Yansheng. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
[14] HUANG Wenjing; HUANG Hualiang; QIU Yubing; CHEN Zhenyu; GUO Xingpeng. EFFECT OF SIZE ON CORROSION BEHAVIOR OF MICRO-ELECTRODES[J]. 中国腐蚀与防护学报, 2010, 30(2): 141-144.
[15] . SEMICONDUCTING BEHAVIOR OF 304 STAINLESS STEEL IN ELECTROLYTE SOLUTION[J]. 中国腐蚀与防护学报, 2008, 28(6期): 341-344.
No Suggested Reading articles found!