Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 523-531    DOI: 10.11092/1005.4537.2013.144
Current Issue | Archive | Adv Search |
Alloying of Compositionally Modulated Cu/Ni Multilayer Films and Corrosion Performance of Cu-Ni Alloy Coatings
LUO Lili, FEI Jingyin(), WANG Lei, LIN Xihua, WANG Shaolan
Faculty of Science,Northwestern Polytechnical University, Xi'an 710129, China
Download:  HTML  PDF(6028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu/Ni multilayered films were prepared by a two step electrodeposition method. The influence of the modulation wavelength and heat treatment condition on the alloying of Cu/Ni multilayered films were studied by means of SEM and XRD. The results showed that the Cu-Ni alloy coatings with well homogeneity in microstructure and composition can be prepared by the alloying of Cu/Ni multilayered films; the alloying process would be favored with the decreasing modulation wavelength as well as the increasing temperature and time of heat-treatment. Besides, the corrosion performance of coatings of copper, nickel and Cu-Ni alloy were comparatively evaluated by immersion test in NaCl solution. The results showed that the Cu-Ni alloy coatings exhibited much positive corrosion potential, smaller polarized current density and lower corrosion rate rather than the pure copper and nickel coatings.

Key words:  Cu/Ni multilayer film      the alloying      electrodeposition      corrosion resistance     
ZTFLH:  TQ153  

Cite this article: 

LUO Lili, FEI Jingyin, WANG Lei, LIN Xihua, WANG Shaolan. Alloying of Compositionally Modulated Cu/Ni Multilayer Films and Corrosion Performance of Cu-Ni Alloy Coatings. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 523-531.

URL: 

https://www.jcscp.org/EN/10.11092/1005.4537.2013.144     OR     https://www.jcscp.org/EN/Y2014/V34/I6/523

Composition and operating condition Copper bath Nickel bath
CuSO45 H2O, gL-1 90 ---
NiSO46 H2O, gL-1 --- 250
H2SO4 (98%), mgL-1 200 ---
Tri-ammonium citrate, gL-1 --- 50
Ammonia solution (25%~28%), mLL-1 --- 110
T, ℃ 20~30 55~65
Ic, mAcm-2 10 10
Agitation Magnetic stirrer Magnetic stirrer
Anode Copper Platinised titanium mesh
Table 1  Copper and nickel baths used for the deposition of Cu/Ni CMMF
Fig.1  Surface morphologies of Cu/Ni CMMF with different period thickness: (a) λ=4 μm, (b) λ=2 μm, (c) λ=1 μm
Fig.2  Cross-sectional morphologies of Cu/Ni CMMF with different modulated wavelength: (a) λ=4 μm, (b) λ=2 μm, (c) λ=1 μm
Influencing
factor
Level
1 2 3 4
A: λ / μm 1 2 4 ---
B: Temperature / ℃ 300 500 700 900
C: Time / h 1 3 8 ---
Table 2  Influencing factor and level during heat treatment of Cu/Ni CMMF
Fig.3  Table header design
Column Influencing factor and level Slope of
number A: λ / μm B: Time / h C: Temperature / ℃ line
1 1 3 300 5.44
2 1 1 500 4.06
3 1 1 700 2.02
4 1 3 900 0.46
5 1 1 300 7.15
6 1 8 500 2.10
7 1 8 700 1.72
8 1 1 900 1.68
9 2 1 300 8.25
10 2 3 500 4.05
11 2 3 700 2.47
12 2 1 900 2.42
13 4 8 300 10.49
14 4 3 500 8.93
15 4 3 700 2.72
16 4 8 900 0.90
Table 3  Orthogonal test program and results
Fig.4  Cross sections of Cu-Ni CMMF with different modulation wavelength after heat treatment at 700 ℃ for 3 h:

(a) λ=4 μm, (b) λ=2 μm, (c) λ=1 μm

Fig.5  Effect of modulated wavelength on alloying of Cu/Ni CMMF
Fig.6  Cross-sectional morphologies of Cu-Ni CMMF with the period thickness of 2 μm after heat treatment temperature for 3 h at 300 ℃ (a), 500 ℃ (b), 700 ℃ (c) and 900 ℃ (d)
Fig.7  Influence of temperature on alloying of Cu/Ni CMMF
Fig.8  Section morphologies of Cu-Ni CMMF with the period thickness of 2 μm after heat treatment at 700 ℃ for 1 h (a), 3 h (b) and 8 h (c)
Fig.9  Effect of heating time on alloying of Cu/Ni CMMF
Sources of
variance
Sum of square of deviations Degrees of
freedom
Average
squares
F Statistical
significance
A SA= 8.75 2 4.38 0.86 non-significance
B SB= 1.60 2 0.80 0.16 non-significance
C SC= 85.05 3 28.35 5.56 *
E SE= 35.67 7 5.10 --- ---
Table 4  Analysis of covariance table
Fig.10  Surface (a) and cross-sectional (b) morphologies of alloyed Cu-Ni coatings
Fig.11  XRD patterns of Cu/Ni CMMF before (a) and after (b) alloying
No. Coating
system
pH (3.5%
NaCl)
Ecorr (vs SCE)
mV
1 Cu 3 -204.2
2 Ni 3 -256.2
3 Alloyed Cu-Ni CMMF 3 -190.8
4 Cu 7 -195.1
5 Ni 7 -188.8
6 Alloyed Cu-Ni CMMF 7 -189.8
7 Cu 11 -130.2
8 Ni 11 -249.0
9 Alloyed Cu-Ni CMMF 11 -108.3
Table 5  Dependence of corrosion potentials (Ecorr) on coating configurations
Fig.12  Anodic polarization curves for copper coating on copper substrate in 3.5%NaCl solutions with different

pH values

Fig.13  Anodic polarization curves for nickel coating on copper substrate in 3.5%NaCl solutions with different pH

values

Fig.14  Anodic polarization curves for alloyed Cu-Ni coating on copper substrate in 3.5%NaCl solutions with different pH values
No. Coating
system
pH (3.5%
NaCl)
Corrosion
rate / mma-1
1 Cu 3 0.2416
2 Ni 3 0.3359
3 Alloyed Cu-Ni CMMF 3 0.1782
4 Cu 7 0.0835
5 Ni 7 0.0434
6 Alloyed Cu-Ni CMMF 7 0.0410
7 Cu 11 0.0112
8 Ni 11 0.0165
9 Alloyed Cu-Ni CMMF 11 0.0019
Table 6  Corrosion rate of Cu, Ni, Cu-Ni coatings in different conditions
[1] Foecke T, Lashmore D S. Mechanical behavior of compositionally modulated alloys: multilayers[J]. Scr. Metall. Mater., 1992, 27: 651-656
[2] Flevaris N K, Logothetidis S. Optical anisotropy in compositionally modulated Cu-Ni films by spectroscopic ellipsometry[J]. Appl. Phys. Lett., 1987, 50(22): 1544-1546
[3] Yu J X, Chen Y Y, Huang Q A. Electrochemical preparation and properties measurement of nanolaminar metallic multilayers[J]. Mater. Prot., 1997, 30(7): 1-3
(喻敬贤, 陈永言, 黄清安. 纳米金属多层膜的电化学制备与性能研究的现状[J]. 材料保护, 1997, 30(7): 1-3)
[4] Huang Q A, Wang Y P, Zhang K, et al. Review of electrodeposition of metallic multilayers[J]. Plat. Finish., 1998, 17(1): 48-51
(黄清安, 王银平, 张葵等. 电沉积法制备金属多层膜的述评[J]. 电镀与涂饰, 1998, 17(1): 48-51)
[5] Stoudt M R, Cammarata R C, Ricker R E. Suppression of fatigue cracking with nanometer-scale multilayered coatings[J]. Scr. Mater., 2000, 43: 491-496
[6] Zhang W, Xue Q J. Tribological properties of nickel-copper multilayer film on beryllium bronze substrate[J]. Thin Solid Films, 1997, 305: 292-296
[7] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic supperlatices[J]. Phys. Rev. Lett., 198861(21): 2472-2475
[8] Gyorgy E M, McWhan D B, Dillon J F, et al. Magnetic behavior and structure of compositionally modulated Cu-Ni thin films[J]. Phys. Rev., 1982, 25B: 6739-6747
[9] Gyorgy E M, Dillon J F, Jr McWhan D B, et al. Magnetic properties of compositionally modulated Cu-Ni thin films[J]. Phys. Rev. Lett.1980, 45: 57-60
[10] Testardi L R, Willens R H, Krause J T, et al. Enhanced elastic moduli in Cu-Ni films with compositional modulation[J]. J. Appl. Phys., 1981, 52(1): 510-511
[11] Cammarata R C, Schlesinger T E, Kim C, et al. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films[J]. Appl. Phys. Lett., 1990, 56(19): 1862-1864
[12] Menezes S, Anderson D P. Wavelength-property correlation in electrodeposited ultrastructured Cu-Ni multilayers[J]. J. Electrochem. Soc., 1990, 137(2): 440-444
[13] Tench D, White J. Enhanced tensile strength for electrodeposited nickel-copper multilayer composites[J]. Metall. Trans., 1984, 15(11)A: 2039-2040
[14] Baral D, Ketterson J B, Hilliard J E. Mechanical properties of composition modulated Cu-Ni foils[J]. J. Appl. Phys., 1985, 57(4): 1076-1083
[15] Gabe D R. Protective layered electrodeposits[J]. Electrochim. Acta, 1994, 39(8/9): 1115-1121
[16] Liao Y, Gabe D R, Wilcox G D. A study of zinc-iron alloy electrodeposition using a rotating cylinder hull cell[J]. Plat. Surf. Finish., 1998, 85(3): 60-66
[17] Watson S A. Zinc-nickel alloy electroplated steel coil and other precoated coil for the use by the automotive industry[J]. Nickel Develop. Inst. Rev., 1988, 13001: 235-258
[18] Kirilova I, Ivanov I, Rashkov St. Anodic behaviour of composition modulated Zn-Co multilayer electrodeposited from single and dual bath[J]. Appl. Electrochem., 1998, 28: 1359-1363
[19] Benballa M, Nils L, Sarret M, et al. Zinc-Nickel codeposition in ammonium baths[J]. Surf. Coat. Technol., 2000, 123(1): 55-61
[20] Fei J Y, Liu J H, Liang G Z, et al. Electrodeposition of composiyionally modulated multilayer Zn-Ni alloy coatings[J]. Corros. Sci. Prot. Technol., 2006, 18(1): 24-27
(费敬银, 刘江宏, 梁国正等. 电沉积法制备组分调解Zn-Ni合金多层镀层[J]. 腐蚀科学与防护技术, 2006, 18(1): 24-27)
[21] Fei J Y, Wilcox G D. Electrodeposition of zinc-nickel compositionally modulated multilayer coatings and their corrosion behaviours[J]. Surf. Coat. Technol., 2006, 200(11): 3533-3539
[22] Xu H B, Fu H T, Zhao G Y. Electrochemical study on dissolution mechanism of copper anode in the active region[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 27-32
(徐海波, 付洪田, 赵广宇. 铜阳极活性区溶解机制的电化学研究[J]. 中国腐蚀与防护学报, 1999, 19(1): 27-32)
[23] Dhar H P, White R E, Burnell G, et al. Corrosion of Cu and Cu-Ni alloys in 0.5M NaCl and in synthetic seawater[J]. Corrosion, 198541(6): 317-323
[24] Kear G, Barker B D, Stokes K, et al. Electrochemical corrosion behaviors of 90-10 Cu-Ni alloy in chloride-based electrolytes[J]. J. Appl. Electrochem., 2004, 34: 659-669
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!