Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 231-236    DOI: 10.11902/1005.4537.2013.124
Current Issue | Archive | Adv Search |
Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel
XING Yunying, LIU Zhiyong, DU Cuiwei(), LI Xiaogang, LIU Ranke, ZHU Min
Key Laboratory of Corrosion and Protection of Ministry of Education, Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(3850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With an autoclave the environment of submarine gathering system was simulated, then in which the influence of concentration of H2S and pH value on the corrosion behavior of weld joints of X65 pipeline steel was investigated by electrochemical techniques, immersion test, SEM and XRD analysis technique. The results show that the free corrosion potential of different portion of the X65 pipeline steel weld joint exhibited a tendency of decrease, but the corrosion density of increase, corresponding to the following order as: the weld seam, the heat affected zone and the base material. The average corrosion rate of the steel weld joints is in the range of 0.1~0.25 mm/a, the increase of the concentration of H2S and the reduction of the pH value can both lead to the increase of corrosion rate. The corrosion mode of weld seam of X65 steel is mainly the uniform corrosion in the simulated environment, and the corrosion of weld seam is slighter than that of the heat affected zone.

Key words:  X65 steel      weld joint      submarine      corrosion      H2S concentration      pH value     
Received:  07 August 2013     
ZTFLH:  TG172.5  

Cite this article: 

XING Yunying, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LIU Ranke, ZHU Min. Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 231-236.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.124     OR     https://www.jcscp.org/EN/Y2014/V34/I3/231

Fig.1  

X65/焊缝界面显微组织

Fig.2  

X65钢焊接接头在模拟溶液中的开路电位

Fig.3  

X65钢焊接接头在模拟溶液中的极化曲线

Fig.4  

模拟溶液中的Nyquist谱和等效电路

Fig.5  

pH值为5, 温度为25 ℃, 流速为2 m/s条件下腐蚀不同时间后腐蚀速率与H2S浓度的关系

Fig.6  

温度25 ℃, H2S浓度为1×10-4, 流速2 m/s条件下腐蚀不同时间后腐蚀速率与溶液pH值的关系

Fig.7  

不同模拟条件下去除腐蚀产物后试样表面的腐蚀形貌

Fig.8  

腐蚀产物的XRD谱

[1] Zhou J, Chen Y F, Li X. A review of the study on the damage mechanism of corroded submarine pipeline under complex loadings[J].Ocean Eng., 2008, 26(1): 127-134
(周晶, 陈严飞, 李昕等. 复杂荷载作用下海底腐蚀管线破坏机理研究进展海洋工程[J]. 海洋工程, 2008, 26(1): 127-134)
[2] Winning I G, Bretherion N, Momahon A, et al. Evaluation of weld corrosion behavior and the application of corrosion inhibitorsand combined scale, corrosion inhibitors [A]. The 59th NACE Annual Conference [C]. New Orleans, 2004: paper No. 04538
[3] Lee C M, Bond S, Woollin P. Preferential weld corrosion effects of weldment microstructure and composition [A]. The 60th NACE Annual Conference [C]. Houston, 2005: paper No.05277
[4] Liu W W, Dong Y, Liu J H. Effect of H2S concentration and temperature on the corrosion behavior of carbon steel in NACE solution[J]. J. Univ. Sci. Technol. Beijing, 2012, 34(10): 1152-1158
(刘文会, 董宇, 刘建华等. 硫化氢质量浓度和温度对碳钢在NACE 溶液中腐蚀行为的影响[J]. 北京科技大学学报, 2012, 34(10): 1152-1158)
[5] Tang J W, Shao Y W, Guo J B, et al. The effect of H2S concentration on the corrosion behavior of carbon steel at 90 ℃[J]. Corros. Sci., 2010, 52(6): 2050-2058
[6] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions[J]. Electrochim. Acta, 2011, 56(4): 1752-1760
[7] China Society for CorrosionCorrosion Protection. Corrosion and Protection in Oil Industry[M]. Beijing: Chemical Industry Press, 2001: 16
(中国腐蚀与防腐学会. 石油工业中的腐蚀与防护[M]. 北京: 化学工业出版社, 2001: 16)
[8] Huang H H, Lee J T, Tsai W T. Effect of H2S on the electrochemical behaviour of steel weld in acidic chloride solutions[J]. Mater. Chem. Phys., 1999, 58: 177-181
[9] Ma H Y, Cheng X L, Chen S H, et al. Theoretical interpretation on impedance spectra for anodic iron dissolution in acidic solutions containing hydrogen sulfide[J]. Corrosion, 1998, 54: 634-640
[10] Ma H, Cheng X, Chen S, et al. An ac impedance study of the anodic dissolution of iron in sulfuric acid solutions containing hydrogen sulfide[J]. J. Electroanal. Chem., 1998, 451: 11-17
[11] Ma H, Cheng X, Li G, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669-1683
[12] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide[J]. Corrosion, 1998, 54: 369-376
[13] Liu W, Pu X L, Bai X D, et al. Development of hydrogen sulfidecorrosion and prevention[J]. Petrol. Drill. Tech., 2008, 36(l): 83-86
(刘伟, 蒲晓林, 白小东等. 油田硫化氢腐蚀机理及防护的研究现状及进展[J]. 石油钻探技术, 2008, 36(l): 83-86)
[14] Zhang S J. Analysis of H2S corrosion and its countermeasures in oil pipelines[J]. Petro-Chem. Equip. Technol., 2007, 28(5): 35-38
(张绍举. 石油管道硫化氢腐蚀与防护对策分析[J]. 石油化工设备技术, 2007, 28(5): 35-38)
[15] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions III. Electrochemical behavior of carbon steel in the different pH solutions containing H2S[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 97-103
(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 III. 不同pH值H2S溶液中碳钢的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2000, 20(2): 97-103)
[1] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[2] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[3] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[4] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[5] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[6] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[7] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[8] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[9] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[10] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[11] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[12] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[13] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[14] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
No Suggested Reading articles found!