Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 237-242    DOI: 10.11902/1005.4537.2013.088
Current Issue | Archive | Adv Search |
Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel
WANG Bin1(), ZHOU Cui1, LI Liangjun2, HU Hongmei1, ZHU Jiaxiang1
1. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
2. Sichuan Kehong Oil and Gas Engineering CO., LTD., Chengdu 61000, China
Download:  HTML  PDF(5396KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The resistance to hydrogen induced corrosion cracking (HIC) of the weld joint of X100 pipeline steel prepared by gas shielding metal arc welding was studied. OM and SEM with EDS were adopted to characterize the microstructure of the X100 weld joint and the non-metallic inclusions. The experimental results presented that the X100 weld joint exhibited a microstructure consisted of acicular ferrite, bainite and M/A islets, MnS, Al-oxide, Si-oxide and Al-Mg-O, Ca-Al-O-S mixed inclusions were also found in the weld joint. The weld joint had a high susceptibility to HIC due to the large amounts of non-metallic inclusions, furthermore, the interfaces and stress between the matrix and brittle M/A islets as well as inclusions might play an important role in the initiation of HIC cracks and then the cracks propagated along the grain boundaries of the coarse bainite.

Key words:  X100 pipeline steel      HIC      Non-metallic inclusion      M/A constituent     
Received:  03 June 2013     
ZTFLH:  TG171  

Cite this article: 

WANG Bin, ZHOU Cui, LI Liangjun, HU Hongmei, ZHU Jiaxiang. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 237-242.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.088     OR     https://www.jcscp.org/EN/Y2014/V34/I3/237

Weld bead Welding
material
Welding
current / A
Welding
voltage / V
Wire feed
speed / inmin-1
Gas flow
Lmin-1
Root welding ACR-110K3M 110~125 15~17 157 15~20
Filling welding 1 ACR-120GM 102~125 20~22 176~204 15~20
Filling welding 2 ACR-120GM 96~123 20~22 165~196 15~20
Filling welding 3 ACR-120GM 110~120 19.5~22 193~196 15~20
Cover welding ACR-120GM 105~116 20~22.5 186~191 20~25
表1  X100管线钢焊接工艺参数
Fig.1  

裂纹尺寸测量示意图

Sample CSR / % CLR / % CTR / %
1 2.38 21.00 21.84
2 6.37 37.13 45.50
3 4.91 31.99 19.68
Average 4.55 30.04 29.01
表2  X100管线钢焊接接头HIC实验结果
Fig.2  

HIC裂纹的OM和SEM像

Fig.3  

X100管线钢焊接接头的OM像

Fig.4  

焊缝的SEM像

Fig.5  

焊接接头硬度分布

Fig.6  

X100管线钢母材及焊缝中的夹杂物类型及形貌

Grade Sulfide
A
Aluminium
oxide B
Silicate
C
Spherical
oxide D
Single spherical
particls DS
Total grade Fine type 0.5 9.5 0.5 47 7.5
Coarse type 1.5 18.5 0.5 1
Maximum grade 0.5 3s 1 2 3
表3  X100管线钢焊接接头非金属夹杂物级别
Fig.7  

X100管线钢焊缝金属中夹杂物的形貌及EDS分析

[1] Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48(12): 4378-4385
[2] Carneiro R A, Ratnapuli R C, de Freitas Cunha Lins V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking[J]. Mater. Sci. Eng., 2003, A357(1): 104-110
[3] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. Int. J. Hydrogen Energy, 2009, 34(24): 9879-9884
[4] Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels[J]. Corros. Sci., 2008, 50(12): 3336-3342
[5] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50(7): 1865-1871
[6] Al-Mansour M, Alfantazi A M, El-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30(10): 4088-4094
[7] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507(1): 167-173
[8] AI-Mansour M, Alfantazi A M, EI-boujdaini M. Sulfide stress cracking resistance of API X100 high strength low alloy steel[J]. Mater. Des., 2009, 30(10): 4088-4094
[9] Qi L H, Niu J, Yang L, et al. Effect of strain aging on microstructure and properties of X100 pipeline steel[J]. Trans. Mater. Heat. Treat., 2011, 32(2): 66-68
(齐丽华, 牛靖, 杨龙等. X100级高强度管线钢应变时效行为[J]. 材料热处理学报, 2011, 32(2): 66-68)
[10] CanadianStandards Association. CSA Z662-07, Oil and Gas Pipeline Systems[S]. 2007
[11] Veritas D N. Rules for Submarine Pipeline Systems 1981 [M]. Oslo: Det Norske Veritas, 1982
[12] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507(1): 167-173
[13] Zhou Q, Ji G S, Zhang J B, et al. The effect of sulfides on hydrogen induced cracking of pipeline steels[J]. J. Mater. Eng., 2002, 9: 38-39
(周琦, 季根顺, 张建斌等. 管线钢中的硫化夹杂物与氢致开裂[J]. 材料工程, 2002, 9: 38-39)
[14] Payandeh Y, Soltanieh M. Oxide inclusions at different steps of steel production[J]. J. Iron. Steel Res. Int., 2007, 14(5): 39-46
[15] Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behavior of X70 steel[J]. J. Alloys Compd., 2009, 484(1): 966-972
[16] Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the HIC behavior of X120 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 147-148
(镇凡, 刘静, 黄峰等. 夹杂物对X120管线钢氢致开裂的影响[J].中国腐蚀与防护学报, 2010, 30(2): 147-148)
[1] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[3] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] Bin JIANG, Lilan ZENG, Tao LIANG, Haobo PAN, Yanxin QIAO, Jing ZHANG, Ying ZHAO. Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[6] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[7] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[8] ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[9] ZHANG Xiuyun, SHI Zhiqiang, WANG Yanfang, LIU Mingxing, YANG Shengsheng. Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Alkaline Soil[J]. 中国腐蚀与防护学报, 2015, 35(1): 33-37.
[10] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[11] WU Zhibin,WEI Yinghua,LI Jing,SUN Chao. Cathodic Polarization Level of Q345 Steel beneath Simulated Disbonded Coating in Agitated Solution[J]. 中国腐蚀与防护学报, 2013, 33(2): 104-108.
[12] YAO Xuejun, WANG Jianqiu, ZUO Jinghui, HAN En-Hou, KE Wei. MICROSTRUCTURE EFFECTS ON CORROSION AND CRACKING BEHAVIOR OF X52 PIPELINE STEEL IN H2S ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
[13] LI Chao, DU Cuiwei, LIU Zhiyong, LI Xiaogang. CHARACTERISTICS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR X100 PIPELINE STEEL IN WATER-SATURATED ACIDIC SOIL[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380.
[14] SHEN Xiaoni, ZHAO Dongmei, REN Fengzhang, TIAN Baohong. INFLUENCES OF ADDITIVES ON ELECTROLESS THICK COPPER PLATING BASED ON THPED SYSTEM[J]. 中国腐蚀与防护学报, 2011, 31(5): 362-366.
[15] MEI Tianqing, YU Guangnan, HE Limin, PEI Yuru. ELECTRODEPOSITION OF ALUMINUM FROM\par AlCl3-[bmim]Cl IONIC LIQUIDS[J]. 中国腐蚀与防护学报, 2011, 31(4): 319-328.
No Suggested Reading articles found!