Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (5): 351-356    DOI:
Current Issue | Archive | Adv Search |
Progress in the Mutual Effects Between AC Interference and the Cathodic Protection of Buried Pipelines
TANG Dezhi, DU Yanxia, LU Minxu, DONG Liang, JIANG Zitao
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China
Download:  PDF(442KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dramatic development of oil, electric power and transportation industries deteriorated alternating current (AC) interference of the pipelines. As a consequence, not only the corrosion of pipelines would be enhanced, but also the cathodic protection (CP) systems be affected significantly. The traditional CP criterion (-850 mV(vs CSE)) was ineffective and a new CP criterion was in needed. The researches about effects of AC interference on CP parameters, such as CP potential,CP current density, sacrificial anode potential, sacrificial anode consumption rate and sacrificial anode efficiency, were reviewed in this article. At the same time, the latest researches on CP criterions and AC corrosion mechanisms were introduced. Finally, the key problems were indicated and the development trend of this research field was predicted.
Key words:  buried pipeline      AC interference      CP parameter      effect      mechanism     
ZTFLH:  TE832  

Cite this article: 

TANG Dezhi,DU Yanxia,LU Minxu,DONG Liang,JIANG Zitao. Progress in the Mutual Effects Between AC Interference and the Cathodic Protection of Buried Pipelines. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 351-356.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I5/351

[1] Baeckrnann W V, Schwenk W, Prinz W. Handbook of Cathodic Corrosion Protection [M]. Houston: Gulf Professional Publishing, 1997
[2] Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new challenge to pipeline integrity [A]. Corrosion/1998 [C]. Houston, Texas: NACE, 1998: 98566
[3] Wakelin R G, Gummow R A, Segall S M. AC corrosion-ease histories, test procedures, mitigation [A]. Corrosion/1998 [C]. Houston, Texas: NACE, 1998: 98565
[4] Roger F. Testing and mitigation of AC corrosion on 8# line: a field study [A]. Corrosion/2004 [C]. Houston, Texas: NACE, 2004: 04210
[5] Hanson H R, Jack S. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion/2004 [C]. Houston, Texas: NACE, 2004: 04209
[6] NACE TG 327 2007-02-08. AC corrosion state-of-the-art: Corrosion rate, mechanism, and mitigation requirements [S]
[7] Dévay J, Szegedi R, Labody I. Effect of alternating current on the electrolytic corrosion of steel [J]. Acta Chim. Hung., 1964, 42:191-226
[8] Chin D T, Venkatesh S. A study of alternating voltage modulation on the polarization of mild steel [J]. J. Electrochem. Soc., 1979, 126: 1908-1913
[9] Pookote S R, Chin D T. Effect of alternating current on the underground corrosion of steels [J]. Mater. Perform., 1978, 17(3): 9-15
[10] Kajiyama F, Nakamura Y. Effect of induced alternating current voltage on cathodically protected pipelines paralleling electric power transmission lines [J]. Corrosion, 1999, 55(2): 200-205
[11] Kouloumbi N, Batis G, Kioupis N, et al. Study of the effect of AC-interference on the cathodic protection of a gas pipeline [J]. Anti-corros. Methods Mater., 2002, 49(5): 335-345
[12] Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci., 1994, 36(6): 1039-1046
[13] Ding Q M, Wang H, Lv H L, et al. Electrochemical study on impact of AC on cathodic protection potential for X70 steel [J]. Corros. Prot., 2011, 32(12): 984-987
(丁清苗, 王辉, 吕毫龙等. 电化学方法研究交流干扰对阴极保护电位的影响 [J]. 腐蚀与防护, 2011, 32(12): 984-987)
[14] Du C Y. The impact of AC interference on cathodic protection systems of buried pipelines [D]. Beijng: University of Science &Technology Beijing, 2007
(杜晨阳. 交流电干扰对埋地管道阴极保护系统的影响 [D]. 北京: 北京科技大学, 2007)
[15] Cao B, Liu K W, Wu Y S. The effect of conductive coupling AC interference on cathodic protection systems [A]. 5th Corrosion Conference of China [C]. Beijing, 2009
(曹备, 刘科伟, 吴荫顺. 电阻耦合型交流干扰对阴极保护系统的影响[A]. 第五届全国腐蚀大会论文集 [C]. 北京, 2009)
[16] Pookote S R, Chin D T. Effect of alternating current on underground corrosion of steels [J]. Mater. Perform., 1978, 17(3):9-15
[17] Freiman L I, Yunovich M. Special behavior of steel cathode in soil and protection assessment of underground pipe with a buried coupon [J]. Prot. Met., 1991, 27(3): 437-447
[18] Gong J B, Xu N X, Zhang C D. The effect of AC interference on electrochemical performance of AZ41 magnesium sacrificial anode[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 21-26
(龚金保, 徐乃欣, 张承典. 交流电干扰对镁合金AZ41牺牲阳极 电化学性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18(2): 21-26)
[19] Bruckner W H. Electrochemical methods for the study of corrosion lead-encased water pipe and cables [J]. Corrosion, 1965, 8:135-136
[20] Yin K H, Tang M H, Xiong X J. Corrosion of buried steel structure under effect of electrical field with industry frequency [J]. J. Chin. Soc. Corros. Prot., 1982, 2(3): 33-41
(尹可华, 唐明华, 熊祥键. 埋地钢构筑物在工频电场作用下的腐蚀 [J]. 中国腐蚀与防护学报, 1982, 2(3): 33-41)
[21] CEOCOR-2001, AC corrosion on buried metallic pipeline-guidelines for risk assessment and mitigation measures [S]
[22] Li Z L, Yang Y. Mechanism, influence factors and risk evaluation of metal alternating current corrosion [J]. CIESC J., 2011, 62(7):1790-1799
(李自力, 杨燕. 金属材料交流腐蚀机理、影响因素及风险评价[J]. 化工学报, 2011, 62(7): 1790-1799)
[23] Philippe C. AC corrosion: detection, investigations and mechanisms [A]. Eurocorr/2003 [C]. Budapest, Hungary, 2003: 307
[24] Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in presence of AC interference [A]. Corrosion/2008 [C]. Houston, Texas: NACE, 2008: 08064
[25] Fu A Q, Cheng Y F. Corrosion of pipeline steel in the presence of alternating current and the new CP recommendation [A]. Proceeding of the 8th International Pipeline Conference [C]. Calgary Alberta, 2010: 31658
[26] Zhang G X. The effect of HVAC transmission lines on the corrosion behavior of buried pipelines [J]. Oil Gas Storage Transp., 2010, 30(2): 125-132
(张贵喜. 高压输电线路对埋地钢质管道的腐蚀影响 [J]. 油气储运, 2010, 30(2): 125-132)
[27] Guo X P, Zhang H M, Tang Y F. Determination of the optimum cathodic protection potential [J]. Corros. Sci. Prot. Technol., 1989, 1(2): 6-9
(郭兴蓬, 张华民, 唐永凡. 阴极保护最佳电位的确定 [J]. 腐蚀科学与防护技术, 1989, 1(2): 6-9)
[28] Xu N X, Zhang C D. Application of electrochemical impedance spectroscopy to cathodic protection study [J]. Corros. Prot., 1996, 18(2): 7-11
(徐乃欣, 张承典. 用电化学阻抗技术研究阴极保护 [J]. 腐蚀与防护, 1996, 18(2): 7- 11)
[29] Wu J X, Fu Z G. AC impedance characteristics of low alloy steels under cathodic protection and determination of the optimum protection potential [J]. J. Chin. Soc. Corros. Prot., 1989, 9(2): 160-164
(吴继勋, 傅争光. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(2): 160-164)
[30] Li Z L, Ding Q M, Zhang Y F, et al. Optimal cathodic protection potential for X70 steel with AC interference determined by electrochemical methods [J]. Corros. Prot., 2010, 31(6): 436-439
(李自力, 丁清苗, 张迎芳等. 用电化学方法建立交流干扰下X70 钢的最佳阴极保护电位 [J]. 腐蚀与防护, 2010, 31(6): 436-439)
[31] Panossian Z. Effect of alternating current by high power lines Voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009: 09541
[32] CEN/TS 15280:2006, Evaluation of a.c. corrosion likelihood of buried pipelines-application to cathodically protected pipelines [S]
[33] Hosokawa Y, Kajiyama Y, Nakamura Y. New CP criteria for elimination the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion/2002 [C], Houston, Texas: NACE, 2002: 02111
[34] Hu S X, Lu M X, Du Y X, et al. New opinions about the AC corrosion of pipelines [J]. Corros. Prot., 2010, 31(6): 419-424
(胡士信, 路民旭, 杜艳霞等. 管道交流腐蚀的新观点[J]. 腐蚀与防护, 2010, 31(6): 419-424)
[35] Frazier M J. Induced AC Influence on Pipeline Corrosion and Coating Disbondment [R]. Northwestern Univ., Evanston, IL (United States). Basic Industrial Research Lab, 1994
[36] Yunovich M, Neil G, Thompson. AC Corrosion: corrosion rate and mitigation requirements [A]. Corrosion/2004 [C], Houston, Texas: NACE, 2004: 04206
[37] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. J. Franklin Inst., 1916, 182(1): 108-110
[38] Williams J. Corrosion of metals under the influence of alternating current [J]. Mater. Prot., 1966, 5(2): 52
[39] Bruckner W H. The effects of 60 cycle alternating current on the corrosion of steels and other metals buried in soils [R]. Illinois: Engineering Experiment Station Bulletin 470, University of Illinois, Urbana, 1964
[40] Goidanich S. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005: 05189
[41] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34(12): 428-433
[42] Pookote S R, Chin D T. Effect of alternating current on the underground corrosion of steels [J]. Mater. Perform., 1978, 17(3): 9-15
[43] Chin D T, Fu T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution [J]. Corrosion, 1979, 35(11): 514-523
[44] Hamlint A W. Some effects of alternating current on pipeline operations [J]. Mater. Perform., 1986, 25 (1): 57-62
[45] Nielsen L V, Nielsen K V. AC-induced corrosion in pipelines: detection, characterization and mitigation [A]. Corrosion/2004 [C], Houston, Texas: NACE, 2004: 04211
[46] Nielsen L V, Cohn P. AC corrosion in pipelines: Field experiences from a highly corrosive test site using ER corrosivity probes [A]. CEOCOR 2003 [C]. Brussels, Belgium, 2003
[47] Nielsen L V. On-Site measurements of AC induced corrosion: effects of AC and DC parameters [A]. CEOCOR 7 th International Congress [C]. Brussels, Belgium, 2005
[48] Nielsen L V. Investigating AC and DC stray current corrosion [A]. CEOCOR 7th International Congress [C]. Brussels, Belgium, 2005
[49] Nielsen L V. A field study of line currents and corrosion rate measurements in a pipeline critically interfered with AC and DC stray currents [A]. CEOCOR 2006 [C]. Brussels, Belgium, 2006
[50] Nielsen L V. Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate [A]. Corrosion/2003 [C]. Houston, Texas: NACE, 2003: 03443
[51] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005[C], Houston, Texas: NACE, 2005: 05375
[52] Panossian Z. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009: 09541
[53] Büchler M, Schoneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: development of a detection method, mitigating measures, and a model for the mechanism [J]. Corrosion, 2009, 65(9): 579-586
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[8] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[10] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[13] WANG Yi,ZHANG Dun. Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[14] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[15] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
No Suggested Reading articles found!