Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (3): 205-210    DOI:
Current Issue | Archive | Adv Search |
Effects of H2O2 Addition on Corrosion Behavior of High-strength Low-alloy Steel in Seawater
YANG Chao1,2, ZHANG Huixia2, GUO Weimin2, FU Yubin1
1. Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100,China;
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
Download:  PDF(809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of high-strength low-alloy steel in natural seawater without and with 0.01 mol/L H2O2 was investigated by electrochemical polarization, Raman spectroscopy, X-ray diffraction (XRD) and rotating ring-disk electrode (RDE) experiment. The corrosion mechanism of the steel in each solution was discussed. The results showed that the free corrosion potential and limited diffusion current density of the steel increased obviously due to the addition of H2O2 in seawater, meanwhile the hydrogen-evolution potential also shifted negatively. The phase constituents of the rust layer in two solutions were almost the same, and the oxygen reduction process of the steel in two solutions was controlled by the two-electronic reaction. In conclusion, the addition of H2O2 could efficiently accelerate the corrosion rate of the steel in natural seawater, but could not change its corrosion mechanism.
Key words:  high-strength low-alloy steel      accelerated corrosion experiment      H2O2      rotating ring-disk electrode      corrosion mechanism     
ZTFLH:  TG172.5  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

YANG Chao,,ZHANG Huixia,GUO Weimin,FU Yubin. Effects of H2O2 Addition on Corrosion Behavior of High-strength Low-alloy Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 205-210.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I3/205

[1] Jin W X, Luo Y N, Song S Z. Mrine erosion-corrosion detections of metal materials [J]. J. Chin. Soc. Corros. Prot., 2008, 28(6): 337-340
(金威贤, 雒娅楠, 宋诗哲. 金属材料实海冲刷腐蚀检测 [J]. 中国腐蚀与防护学报, 2008, 28(6): 337-340)
[2] Xiao K, Dong C F, Li X G, et al. Study on acceletated corrosion tests for carbon steels and weathering steels [J]. Equip. Environ. Eng., 2007, 4(3): 5-8
(肖葵, 董超芳, 李晓刚等. 碳钢和耐候钢加速腐蚀实验研究 [J]. 装备环境工程, 2007, 4(3): 5-8)
[3] Chen H L, Wei Y. Corrosion mechanism of a carbon steel in simulated humid atmospheres [J]. Corros. Sci. Prot. Technol., 2006, 18(4): 255-257
(陈惠玲, 魏雨. 一种碳钢在模拟潮湿环境中腐蚀机理的探讨 [J]. 腐蚀科学与防护技术, 2006, 18(4): 255-257)
[4] Huang J H, Li Z G, Qian Y H. Accelerated corrosion behavior of seawater corrosion resistance Q235C-NHY3 steel in artificial simulated environments [J]. Shanghai Met., 2006, 28(4): 6-8
(黄锦花, 李自刚, 钱余海. 低合金耐海水腐蚀钢在模拟腐蚀环境下的耐蚀性能研究 [J]. 上海金属, 2006, 28(4): 6-8)
[5] Chen H L, Chen S H, Wei Y. Comparison of the rust layers formed on carbon steel by accelerated corrosion testing in NaHSO3 and Na2SO4 solutions [J]. Corros. Prot., 2006, 27(10): 496-498
(陈惠玲, 陈淑会, 魏雨. 碳钢在NaHSO3和Na2SO4溶液中加速腐蚀锈层比较 [J]. 腐蚀与防护, 2006, 27(10): 496-498)
[6] Zhang H X, Qi X, Zeng H B, et al. Study on method of accelerated corrosion experiment in simulated seawater [J]. Corros. Sci. Prot. Technol., 2010, 22(4): 58-62
(张慧霞, 戚霞, 曾华波等. 海水全浸室内模拟加速试验方法的初步研究 [J]. 腐蚀科学与防护技术, 2010, 22(4): 58-62)
[7] Wei B M. Metal Corrosion Theory and Control [M]. Beijing: Chemical Industry Press, 2001
(魏宝明. 金属腐蚀理论及应用 [M]. 化学工业出版社, 2001)
[8] Zhang H X, Qi X, Deng C L, et al. Study on corrosion rust layers of low alloy steel in different simulated seawater environment using Raman spectroscopy [J]. Equip. Environ. Eng., 2009, 1(6): 30-34
(张慧霞, 戚霞, 邓春龙等. 不同腐蚀体系中低合金钢锈层的拉曼光谱研究 [J]. 装备环境工程, 2009, 1(6): 30-34)
[9] Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution [J]. Corros. Prot., 2007, 28(1): 17-19
(陈惠玲, 李晓娟, 魏雨. 碳钢在含氯离子环境中腐蚀机理的研究 [J]. 腐蚀与防护, 2007, 28(1): 17-19)
[10] Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corrosion, 1972, 12(3): 227-246
[11] Lair V, Antony H, Legrand L. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48(8): 2050-2063
[12] Nishimura T, Katayama H, Noda K. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56(9): 935-950
[13] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications (2nd Ed.) [M]. New York: Wiley, 2001
[14] Uchida S, Tachibana M, Watanabe A, et al. Effect of hydrogen peroxide on intergranular stress corrosion cracking of stainless steel in high temperature water. ⅡOptimization of crack propagation rate measurement system [J]. J. Nucl. Sci. Technol., 2000, 37(3): 257-266
[15] Liu H Q, Kuang F, Zhang D. Cathodic behavior of high molybdenum duplex stainless steel in 3.5% sodium chloride solution [A]. 2008’ Material Corrosion and Control Conference Proceedings [C]. Qingdao, 2008: 48-50
(刘怀群, 匡飞, 张盾. 高钼双相不锈钢在3.5%NaCl 溶液中的阴极反应行为 [A]. 2008’ 材料腐蚀与控制学术研讨会论文集[C].青岛, 2008: 48-50)
[16] Babi? R, Metiko? H M. Oxygen reduction on staniless steel [J]. J. Appl. Electrochem., 1993, 23: 352-357
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[8] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[9] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[10] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[11] Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[12] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[13] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[14] CHANG Xinlong,LIU Wanlei,LAI Jianwei,ZHANG Xiaojun. Stress Corrosion Cracking Susceptibility of LD10 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.
[15] CUI Yuhui, HU Rui, ZHANG Tiebang, LI Jian, KOU Hongchao, LI Jinshan. MICROSTRUCTURE OF Fe-BASED AMORPHOUS AND NANOCRYSTALLINE COATINGS AND ITS CORROSION RESISTANCE IN H2O2 SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(4): 317-321.
No Suggested Reading articles found!