Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 449-454    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL BEHAVIOR OF 300M AND Cr9 STEEL IN ACIDIC ENVIRONMENTS
SUN Min1, XIAO Kui1, DONG Chaofang1, LI Xiaogang1, ZHONG Ping2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2. Beijing Institute of Aeronautical Materials, Beijing 100095
Download:  PDF(1217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical behavior of 300M and a new kind of ultra high strength steel (Cr9 for short) in sulfate acidic environment, as well as the effects of pH and Cl- concentration on the corrosion behavior were studied by potentiodynamic polarization curve, EIS, and metallographic microscope. The results showed that with increasing pH value, the corrosion potentials Ecorr of 300M and Cr9 shifted towards the positive direction, the charge-transfer resistances Rct increased, and the corrosion current densities emcorr decreased. The (H2SO4+Na2SO4) solution with decreasing pH value suppressed the corrosion rates of 300M and Cr9. In the chloride-free sulfate acidic solution, general corrosion on the 300M surface occurred, while on Cr9 surface pitting occurred. The addition of chloride ions induced the pittings and transformed the passivity of Cr9 into an active dissolution state. Cr9 steel contains more contents of Cr, Mo and Ni, and the elements enhanced the corrosion resistance in acidic solution and made a much lower corrosion rate compared with 300M.

Key words:  300M      ultrahigh strength steel      acidic solution      electrochemistry      passivity     
Received:  10 January 2012     
ZTFLH:  TG172.3  
Corresponding Authors:  LI Xiaogang     E-mail:  lixiaogang99@263.net

Cite this article: 

SUN Min, XIAO Kui, DONG Chaofang, LI Xiaogang, ZHONG Ping. ELECTROCHEMICAL BEHAVIOR OF 300M AND Cr9 STEEL IN ACIDIC ENVIRONMENTS. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 449-454.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/449

 


[1] Malakondaian G, Srinivas M, Rama Rao P. Ultrahigh-strength low-alloy steels with enhanced fracture toughness [J]. Prog. Mater. Sci., 1997, 42: 209-242

[2] Figueroa D, Robinson M J. Hydrogen transport and embrittlement in 300M and AerMet100 ultra high strength steels [J]. Corros. Sci., 2010, 52(5): 1593-1602

[3] Liu M T, Liu J H, Zhong P. Research development of corrosion resistance of ultra-high strength steel [J]. Sci. Technol. Rev., 2010, 28(9): 112-115

(柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展 [J]. 科技导报, 2010, 28(9): 112-115)

[4] Eliaz N, Shachar A, Tal B, et al. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels [J]. Eng. Fail. Anal., 2002, 9(2): 167-184

[5] Ramadan S, Gaillet L, Tessier C, et al. Detection of stress corrosion cracking of high-strength steel used in prestressed concrete structures by acoustic emission technique [J]. Appl. Surf. Sci., 2008, 254: 2255-2261

[6] Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on corrosion and electrochemical behaviors of ultra high strength steels [J]. Int. J. Miner. Metall. Mater., 2010, 17(3): 282-289

[7] Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50(3): 780-794

[8] Rehbach M S, Sluyter J H. In: Baord A J ed., Electroanalytical Chemistry [M]. New York: Marcel Dekker Inc., 1970

[9] Xiao J M. Metallurgical Fundamentals of Stainless Steel [M]. Beijing: Metallurgical Industry Press, 2006. 153, 159-160

(肖纪美. 不锈钢的金属学问题[M]. 北京: 冶金工业出版社, 2006. 153, 159-160)

[10] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments [J]. Corros. Sci., 2011, 53(12): 4159-4165

[11] Choi Y S, Shim J J, Kim J G. Corrosion behavior of low alloy steels containing Cr, Co and W in synthetic potable water [J]. Mater. Sci. Eng., 2004, A385(1-2): 148-156

[12] Keller P, Strehblow H H. XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4 [J]. Corros. Sci., 2004, 46(8): 1939-1952

[13] Jin H M, Wu X Q, Zheng Y G, et al. Effect of Mo content on the corrosion and erosion-corrosion of stainless steel in oil containing naphthenic acid [J]. Acta Metall. Sin., 2002, 38(10): 1067-1073

(敬和民, 吴欣强, 郑玉贵等. Mo含量对不锈钢在环烷酸介质中腐蚀与冲蚀的影响[J]. 金属学报, 2002, 38(10): 1067-1073)

[14] Staehle R W, Forty A J, Rooyen D. Fundamental Aspects of Stress Corrosion Cracking [M]. Ohio: The Ohio State University, 1967, 225
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[5] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[8] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[9] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[10] Fahe CAO, Xiaoyan LIU, Zejie ZHU, Zhenni YE, Pan LIU, Jianqing ZHANG. Mumeric Simulation and Gap Control of Scanning Electrochemical Microscopy and Its Application[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[11] Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[12] Xiaowei FENG,Wenjun QI,Xiaohui LI,Zhicheng LI. Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys[J]. 中国腐蚀与防护学报, 2016, 36(3): 267-272.
[13] Shinian LIU,Cheng WANG,Jilun DENG,Xi LI,Shenglong ZHU,Fuhui WANG. Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid[J]. 中国腐蚀与防护学报, 2015, 35(6): 510-518.
[14] Bo LI,Xuegang LUO,Yongjin TANG,Zifan LI,Sheng YANG,Yang JIAO. Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper[J]. 中国腐蚀与防护学报, 2015, 35(4): 345-352.
[15] Xingguo FENG,Xiangyu LU,Yu ZUO,Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
No Suggested Reading articles found!