Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 443-448    DOI:
Current Issue | Archive | Adv Search |
ZINC-NICKEL ALLOY ELECTROPLATING IN AN ALKALINE BATH
LU Wenshan1, XU Tianfeng1, CHEN Yu1, ZHANG Zhao1, ZHANG Jianqing1,2
1. Department of Chemistry, Zhejiang University, Hangzhou 310027
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science Shenyang 110016
Download:  PDF(1054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zinc-nickel alloy coatings were electroplated from an alkaline electrolyte using direct current, the influences of principal technological parameters on the composition of zinc-nickel alloy coatings were studied using energy dispersive spectrometer (EDS). The results show that the content of nickel in Zn-Ni deposits kept between 11% and 13% and the co-deposition of zinc and nickel behaved anomalously. The microstructure of the optimized deposition was characterized by scanning transmission electron microscope (SEM), atomic force microscope (AFM) and X-ray diffractometer (XRD), the results showed that the Zn-Ni deposits consisted mainly of the γ-phase(NiZn3) and the film was compact and fine-grained. Meanwhile, the Tafel plot measurements proved the coating had good corrosion resistance.

Key words:  zinc-nickel alloy      electroplating      alkaline      anomalous co-deposition      corrosion resistance     
Received:  28 November 2011     
ZTFLH:  O646  
Corresponding Authors:  ZHANG Zhao     E-mail:  eaglezzy@zju.edu.cn

Cite this article: 

LU Wenshan, XU Tianfeng, CHEN Yu, ZHANG Zhao, ZHANG Jianqing. ZINC-NICKEL ALLOY ELECTROPLATING IN AN ALKALINE BATH. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 443-448.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/443

 


[1] Byk T V, Gaevskaya T V, Tsybulskaya L S. Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn-Ni alloy coatings [J]. Surf. Coat. Technol., 2008. 202: 5817-5823

[2] Chandrasekar M S, Shanmugasigamani srinivasan, mala-thy pushpavanam. Properties of zinc alloy electrodeposits produced from acid and alkaline electrolytes [J]. J. Solid State Electrochem., 2009, 13: 781-789

[3] Li G Y, Lian J S, Niu L Y, et al. Investigation of nanocrystalline zinc-nickel alloy coatings in an alkaline zincate bath [J]. Surf. Coat. Technol., 2005, 191: 59-67

[4] Basavanna S, Arthoba N Y. Electrochemical studies of Zn-Ni alloy coatings from acid chloride bath [J]. J. Appl. Electrochem., 2009, 39: 1975-1982

[5] Park H, Szpunar J A. The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings [J]. Corros. Sci., 1998, 40(4/5): 525-545

[6] Sidney O P Jr, Celia Marina de Alvarenga Freire, Margarita B. Zn-Ni alloy deposits obtained by continuous and pulsed electrodeposition processes [J]. Surf. Coat. Technol., 1999, 122: 10-13

[7] Feia J Y, Wilcox G D. Electrodeposition of zinc-nickel compositionally modulated multilayer coatings and their corrosion behaviours [J]. Surf. Coat. Technol., 2006, 200: 3533-3539

[8] Abou-Krisha M M, Assaf F H, El-Naby S A. Electrodeposition behavior of zinc-nickel-iron alloys from sulfate bath [J], J. Coat. Technol. Res., 2009, 6(3): 391-399

[9] Szczygiel B, Laszczynska A, Tylus. Influence of molybdenum on properties of Zn-Ni and Zn-Co alloy coatings [J]. Surf. Coat. Technol., 2010, 204: 1438-1444

[10] Sachin H P, Achary G, Arthoba Naik Y, et al. Polynitroaniline as brightener for zinc-nickel alloy plating from non-cyanide sulphate bath [J]. Indian Acad. Sci., 2007, 30(1): 57-63

[11] Fei J Y, Liang G Z, Xin W L, et al. Surface modification with zinc and Zn-Ni alloy compositionally modulated multilayer coatings [J]. J. Iron Steel Res., 2006, 13(4): 61-67

[12] Gou S P, Sun I W. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt [J]. Electrochim. Acta, 2008, 53: 2538-2544

[13] Bhatnagar P, Michael L F. Selective electrodeposition of zinc-nickel alloy through porous medium [J]. Surf. Coat. Technol., 2006, 200: 6083-6087

[14] Li G Y, Niu L Y, Jiang Z H, et al. Influence of current density on microstructure of nanocrystalline zinc nickel alloy deposition [J]. J. Jilin Univ. (Eng. Technol.), 2006, 36(6): 835-840

(李光玉, 牛丽媛, 江中浩等. 电流密度对纳米锌镍合金镀层显微组织的影响[J]. 吉林大学学报(工学版), 2006, 36(6): 835-840)

[15] Muller C, Sarret M, Benballa M. Complexing agents for a Zn-Ni alkaline bath[J]. J. Electroanal. Chem., 2002, 519: 85-92

[16] Garcia E, Sarret M, Muller C, et al. Residual stress and other structural characteristics of electroplated Zn-Ni alloys[J]. J. Electrochem. Soc., 2002, 149(5): 284-288

[17] Huang J D, Wu J, Wang Y P, et al. A review of alkaline zinc-nickel alloy plating[J]. Plating Finishing, 2003, 25(2): 5-7

(黄敬东, 吴俊, 王银平等. 碱性锌镍合金电镀述评[J]. 电镀与精饰, 2003, 25(2): 5-7)

[18] Tsybulskaya L S, Gaevskaya T V, Purovskaya O G, et al. Electrochemical deposition of zinc-nickel alloy coatings in a polyligand alkaline bath[J]. Surf. Coat. Technol., 2008, 203: 234-239

[19] Lu J T, Xu Q Y, Chen J H, et al. Study of zinc-nickel alloy co-deposition[J]. Electr. Pollut. Control, 1996, 16(4): 3-5

(卢锦堂, 许乔瑜, 陈锦红等. 碱性锌镍合金电沉积研究[J]. 电镀与环保, 1996, 16(4): 3-5)

[20] Wang Z L, Yang Y X, Chen Y R, et al. A study on electroplating of zinc nickel with HEDP[J]. Function Mater., 2005, 36(8): 1294-1300

(王兆伦, 杨宇翔, 陈娅如等. 有机多膦酸盐电镀锌镍合金的研究[J]. 功能材料, 2005, 36(8): 1294-1300)

[21] Roev V G, Gudin N. V. New aspects of zinc-nickel alloy co-deposition[J]. Trans. Inst. Met. Finish., 1996, 74(5): 153-157

[22] Chu Z M, Zhang J S, An M Z. Progress on the mechanism of simultaneous co-deposition of zinc with iron-group metals[J]. Surf. Technol. 2001, 30(6): 1-4

(屠振密, 张景双, 安茂忠. 锌与铁族金属共沉积机理的新进展[J]. 表面技术, 2001, 30(6): 1-4)

[23] Zhang Z, Leng W H. Study on the behavior of Zn-Fe alloy electroplating[J]. J. Electroanal. Chem., 2001, 516: 127-130

[24] Cai J L, Zhou S M. The fundamental effects of Tetren on the electrodeposition of Zn-Ni Alloy in alkaline baths[J]. J. Xiamen Univ. (Nat. Sci.), 1994, 33(3): 345-349

(蔡加勒, 周绍民. 碱性锌镍合金电沉积中Tetren的基本效应[J], 厦门大学学报(自然科学版), 1994, 33(3): 345-349)

[25] Lee H Y, Kim S G. Characteristics of Ni deposition in an alkaline bath for Zn-Ni alloy deposition on steel plates[J]. Surf. Coat. Technol. 2000, 135: 69-74

[26] Damaschin B B, Petrie O A. Translated by Gu L L. Electrochemical Dynamics Introduction[M]. Beijing: Science Press, 1989

(B. B. 达马斯金, O. A. 佩特里著, 谷林锳译. 电化学动力学导论[M]. 北京: 科学出版社, 1989)

[27] Fu X C, Shen W X, Yao T Y. Physical Chemistry(the 5th edition)[M]. Beijing: Higher Education Press, 2005

(傅献彩, 沈文霞, 姚天扬. 物理化学(第五版)[M]. 北京: 高等教育出版社, 2005)

[28] Huang K L, Tang Y Y, Nong L Q. Experiment study of the phase analysis on the Ni-Zn alloys[J]. Phys. Exp., 2010, 30(4): 8-11

(黄开连, 唐轶媛, 农亮勤. Ni-Zn合金物相分析的实验研究[J]. 物理实验, 2010, 30(4): 8-11)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!