Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 437-442    DOI:
Current Issue | Archive | Adv Search |
REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS
TAN Jibo, WU Xinqiang, HAN En-Hou
State Key Laboratory for Corrosion and Protection, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(458KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The paper summarized the anomalous deformation characteristics, influencing factors and mechanisms of dynamic strain aging (DSA) in nuclear-grade carbon steels, low alloy steels and austenitic stainless steels. The possible effects of the interaction between DSA and high temperature water on environmentally assisted cracking of structural materials used in nuclear power plants have been discussed. The coming possible research topics and directions are also proposed.

Key words:  dynamic strain aging, nuclear-grade materials      high temperature high pressure water      environmentally assisted cracking      corrosion fatigue      stress corrosion cracking     
Received:  09 January 2012     
ZTFLH:  TG172.8  
Corresponding Authors:  WU Xinqiang     E-mail:  xqwu@imr.ac.cn

Cite this article: 

TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 437-442.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/437

[1] Kim I S, Kang S S. Dynamic strain aging in SA508-class 3 pressure vessel steel [J]. Int. J. Pres. Ves. Pip., 1995, 62(2): 123-129


[2] Lee B H, Kim I S. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl.3 forging steel [J]. J. Nucl. Mater., 1995, 226(1-2): 216-225

[3] Xu S, Wu X Q, Han E H, et al. Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel [J]. J. Mater. Sci, 2009, 44(11): 2882-2889

[4] Wu X Q, Katada Y. Role of dynamic strain aging in corrosion fatigue of low-alloy pressure vessel steel in high temperature water [J]. J. Mater. Sci, 2007, 42(2): 633-639

[5] Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J], J. Nucl. Mater., 2004, 328(2-3): 232-242

[6] Hong S G, Lee S B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel [J], J. Nucl. Mater., 2005, 340(2-3): 307-314

[7] Xu S, Wu X Q, Han E H. A review of corrosion fatigue of steels for LWR plant in high temperature and high pressure water[J]. Corros. Sci. Prot. Technol, 2007, 19(5): 345-349

(徐松, 吴欣强, 韩恩厚. 核电材料高温高压水腐蚀疲劳研究现状及进展[J]. 腐蚀科学与防护技术, 2007, 19(5): 345-349)

 

[8] Xu S, Wu X Q, Han E H. Low cycle fatigue fracture for 316Ti stainless steel in high temperature and pressure water[J]. J. Chin. Soc. Corros. Prot, 2010, 30(2): 119-123

 (徐松, 吴欣强, 韩恩厚. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹端口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123)

[9] Xu S, Wu X Q, Han E H. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environment fatigue design model[J]. Acta Metall Sin., 2011, 47(7): 790-796

(徐松, 吴欣强, 韩恩厚. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011, 47(7): 790-796)

[10] Li G F, Li G J, Fang K W. Stress corrosion cracking behavior of dissimilar metal weld A508/52M/316L in high temperature water environment[J]. Acta Metall. Sin., 2011, 47(7): 797-803

(李光福, 李冠军, 方可伟. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀开裂[J]. 金属学报, 2011, 47(7): 797-803)

[11] Chopra O K, Shack W J. Low-cycle fatigue of piping and pressure vessel steels in LWR environments [J]. Nucl. Eng. Des, 1998, 184(1): 49-76

[12] Chopra O K, Shack W J. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels [A]. Nuclear Regulatory Commission[C]. Washington. 1998. 1

[13] Andresen P L, Briant C L. Environmentally assisted cracking of types 304L/316L/316NG stainless steel in 288℃ water [J]. Corrosion, 1989, 45(6): 448-463

[14] McCormick P G. A model for the portevin-le chatelier effect in substitutional alloy [J]. Acta Metall., 1972, 20(3): 351-354

[15] Cottrell A H, Hunter S C. Nabarro F R N. Dislocations and plastic flow in crystals [J]. Phil. Mag. Lett, 1953, 44: 1064-1067

[16] Wilson D V. Precipitation and growth of carbide particles in a cyclically strained low carbon steel [J]. Acta Metall., 1973, 21(5): 673-682

[17] Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30(12): 2153-2160

[18] Venkadesan S, Phaniraj C, Sivaprasad P V, et al. Activation energy for serrated flow in a 15Cr-15Ni Ti-modified austenitic stainless steel [J]. Acta Metall., 1992, 40(3): 569-580

[19] Atkinson J D, Yu J. The role of dynamic strain-ageing in the environment assisted cracking observed in pressure vessel steels [J]. Fatigue Fract. Eng. M, 1997, 20(1): 1-12

[20] Taheri A K, Maccagno T M, Jonas J J. Dynamic strain aging and the wire drawing of low carbon steel rods [J]. ISIJ Int., 1995, 35(12): 1532-1540

[21] Kim J W, Kim I S. Investigation of dynamic strain aging in SA106 Gr.C piping steel [J]. Nucl. Eng. Des., 1997, 172(1-2): 49-59

[22] Samuel K G, Mannan S L, Rodriguez P. Serrated yielding in AISI 316 stainless steel [J]. Acta Metall., 1988, 36(8): 2323-2327

[23] Chu W Y, Wang Y B, Qiao L J. Interaction between blue brittleness and stress corrosion cracking [J]. J. Nucl. Mater., 2000, 280(2): 250-254

[24] Seifert H P, Ritter S. Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 372(1): 114-131

[25] Seifert H P, Ritter S. Corrosion fatigue crack growth behavior of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. Corros. Sci., 2008, 50(7): 1884-1899

[26] Heldt J, Seifert H P. Stress corrosion cracking of low-alloy, reactor pressure vessel steels in oxygenated, high-temperature water [J]. Nucl. Eng. Des., 2001, 206(1): 57-89

[27] Weisse M, Wamukwamab C K, Christ H J, et al. The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain ageing [J]. Acta Metall. Mater., 1993, 41(7): 2227-2233

[28] Srinivasan V S, Valsan M, Sandhya R S, et al. High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel [J]. Int. J. Fatigue, 1999, 21(1): 11-21

[29] Hong S G, Lee S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel influence of dynamic strain aging [J]. Int. J. Fatigue, 2004, 26(8): 899-910

[30] Hong S G, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. Int. J. Fatigue, 2005, 27(10-12): 1420-1424

[31] Srinivasan V S, Sandhya R, Valsan M, et al. The influence of dynamic strain aging on stress response and strain-life relationship in low cycle fatigue of 316(N) stainless steel [J]. Sci. Mater., 1997, 37(10): 1593-1598

[32] Kim D W, Kim W G, Ryu W S. Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel [J]. Int. J. Fatigue, 2003, 25(9-11): 1203-1207

[33] Mohan R, Marschall C. Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging [J]. Acta Metall., 1998, 46(6): 1933-1948

[34] Huang J Y, Hwang J R, Yeh J J, et al. Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels [J]. J. Nucl. Mater., 2004, 324(2-3): 140-151

[35] Yeh J J, Huang J Y, Kuo R C. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments [J]. Mater. Chem. Phys., 2007, 104(1): 125-132

[36] Wu X Q, Katada Y. Role of inclusions and carbide bands in corrosion fatigue of pressure vessel steel in high-temperature water [J].Corrosion, 2004, 60(11): 1045-1057

[37] Wu X Q, Katada Y. Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water [J]. Mater. Sci. Eng., 2004, 379(1-2): 58-71

[38] Wu X Q, Katada Y. Inclusion-involved fatigue cracking in high temperature water [J]. Mater. Corros., 2005, 56(5): 305-311

[39] Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment [J]. Corros. Sci., 2005, 47(6): 1415-1428

[40] Wu X Q, Kim I S. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl. 3 pressure vessel steel [J]. Mater. Sci. Eng., 2003, 348(1-2): 309-318

[41] Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity--a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176(1-2): 191-202

[42] Wu X Q, Katada Y, Lee S G, et al. Hydrogen-involved tensile and cyclic deformation behavior of low-alloy pressure vessel steel [J]. Metall. Mater. Trans., 2004, 35(5): 1477-1486

[43] Wu X Q, Katada Y. Cyclic cracking behavior of low-alloy pressure vessel steel in simulated BWR water [J]. J. Nucl. Mater., 2004, 328(2-3): 115-123

[44] Wu X Q, Han E H, Ke W, et al. Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water [J]. Nucl. Eng. Des., 2007, 237(12-13): 1452-1459

[45] Katada Y, Nagata N. The effect of temperature on fatigue crack growth behavior of a low alloy pressure vessel steel in simulated BWR environment [J]. Corros. Sci., 1985, 25(8-9): 693-704

[46] Katada Y, Nagata N, Sato S. Optical observations of fatigue crack growth behaviour of a low-alloy pressure vessel steel in high-temperature pressurized water [J]. Int. J. Pres. Ves. Pip., 1991, 48(1): 37-52

[47] Seifert H P, Ritter S. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 378(3): 312-326
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[10] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[11] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[12] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[13] Chao XIANG,Jiazhen WANG,Huameng FU,En-Hou HAN,Haifeng ZHANG,Jianqiu WANG,Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[14] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!