Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (4): 327-332    DOI:
Current Issue | Archive | Adv Search |
PHOTOGENERATED CATHODE PROTECTION PROPERTIES OF Zn-Co-TiO2 NANOCOMPOSITE COATINGS
WAN Binghua1,2, FEI Jingyin1, FENG Guangyong2, ZHANG Wuhua1, WANG Shaolan1
1. Department of Applied Chemistry, College of Science, Northwestern Polytechnical University, Xi'an 710072
2. Tianjin Aerospace Precision Products Co., Ltd, Tianjin 300300
Download:  PDF(1607KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zn-Co-TiO2 nanocomposite coatings were prepared by electrodeposition technique on mild steel. SEM, EDS and XRD examinations revealed that 12.63% TiO2 nanoparticles were uniformly dispersed in the nanocomposite coating and refined the crystalline size, consequently, the corrosion resistance of Zn-Co alloy coatings was further improved. The photogenerated cathode protection properties of Zn-Co-TiO2 nanocomposite coating were investigated by monitoring the electrode potential under ultraviolet (UV) illuminated conditions, The results showed the electrode potentials of Zn-Co-TiO2 nanocomposite coating negatively shifted under UV illuminated, which indicated that Zn-Co-TiO2 nanocomposite coating had photogenerated cathode protection properties; When the UV light was turned off, the electrode potentials shifted to the positive direction but were still lower than the initial electrode potential before UV illuminated; it was also found that the oxidation at 400℃ for 6 h could further improve the photogenerated cathode protection properties and the reason for this is attributed to photogeneated cathode protection properties of ZnO layer generated on the surface and its synergy with TiO2.
Key words:  photogenerated cathode protection      Zn-Co alloy coating      TiO2      electrodeposition      corrosion resistance     
Received:  20 June 2011     
ZTFLH: 

TG174.41

 
Corresponding Authors:  WAN Binghua     E-mail:  wanbinghua2009@163.com

Cite this article: 

WAN Binghua, FEI Jingyin, FENG Guangyong, ZHANG Wuhua, WANG Shaolan. PHOTOGENERATED CATHODE PROTECTION PROPERTIES OF Zn-Co-TiO2 NANOCOMPOSITE COATINGS. J Chin Soc Corr Pro, 2012, 32(4): 327-332.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I4/327

[1] Shan C X , Hou X H, Choy K L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition[J]. Surf. Coat. Technol., 2008, 202(11): 2399-2402

[2] Meinert K, Uerpmann C, Matschullat J, et al. Corrosion and leaching of silver doped ceramic IBAD coatings on SS 316L under simulated physiological conditions[J]. Surf. Coat. Technol., 1998, 103-104: 58-65

[3] Yao Z P, Jiang Z H, Wang F P.

Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique[J]. Electrochim. Acta, 2007, 52(13): 4539-4546

[4] Hamdy A S, Butt D P, Ismail A A. Electrochemical impedance studies of sol-gel based ceramic coatings systems in 3.5% NaCl solution[J]. Electrochim. Acta, 2007, 52(9): 3310-3316

[5] Li M C, Luo S Z, Wu P F, et al. Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions[J]. Electrochim. Acta, 2005, 50(16-17): 3401-3406

[6] Yun H, Lin C J, Li J, et al. Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection[J]. Appl. Surf. Sci., 2008, 255(5): 2113-2117

[7] Yuan J N, Tsujikawa S. Characterization of sol-gel-derived TiO2 coating and their photoeffects on copper substrates[J]. J. Electrochem. Soc., 1995, 142(10): 3444-3450

[8] Konishi T, Tsujikawa S. Photo-effect of sol-gel derived TiO2 coating on 304 stainless steel[J]. Zairyo-to-Kankyo, 1997, 46(11): 709-716

[9] Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc. B, 2001, 148(1): 24-28

[10] Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. J. Phys. Chem. B, 2002, 106(18): 4775-4781

[11] Higashi K, Fukushima H, Urakawa T. Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt[J]. J. Electrochem. Soc., 1981, 128(10): 2081-2085

[12] Younan M M. Electrodeposition of ternary zinc-nickel-cobalt alloys from an acidic chloride bath[J]. Met. Finish., 2000, 98(10): 38-42

[13] Townsend H E, Borzillo A R. Twenty-year atmosphericcor-rosion tests of hot-dip coated sheet steel[J]. Mater. Performance., 1987, 26(7): 37-41

[14] Duan Y G, Fu W C, Peng Q J. Electroplating Zn-Al alloy technology[J]. J. Wuhan. Univ. Technol., 2002, 17(3): 54-55

[15] Abibsi A, Dennis J K, Short N R. The effect of plating variables on zinc-nickel alloy electrodeposition[J]. Trans. Inst. Met. Finish., 1991, 69(4): 145-148

[16] Bajat J B, Miskovic-Stankovic V B, Maksimovic M D, et al. Electrochemical deposition and characterization of Zn-Co alloys and corrosion protection by electrodeposited epoxy coating on Zn-Co alloy[J]. Electrchim. Acta, 2002, 47(25): 4101-4112

[17] Short N R, Abibsi A, Nennis J K. Corrosion resistance of electroplated zinc alloy coatings[J]. Trans. Inst. Met. Finish., 1984, 67(1): 73-77

[18] Fei J Y, Liang G Z, Xin W L. Electrodeposition of com-positionally modulated zinc-cobalt alloy multilayer coatings[J]. Chin. J. Polym. Sci., 2005, 13(2): 259-265

[19] An M Z, Yang Z L, Li W L, et al. Study on the corrosion resistance and the structure of Zn-Co alloy coating[J]. Mater. Prot., 1998, 31(4): 5-6

     (安茂忠, 杨哲龙, 李文良等. 锌钴合金镀层结构与耐蚀性研究[J]. 材料保护, 1998, 31(4): 5-6)

[20] Hino M, Hiramatsu M, Murakami K. Electroplated Zn-Ni-SiO2 composite coating treated with a silane coupling agent to replace chromating[J]. Acta Metall. Sin. (Eng. Lett.), 2005, 18(3): 416-422

[21] Fustes J, Gomes A, Silva Pereira M I da. Electrodeposition of Zn-TiO2 nanocomposite films-effect of bath composition[J]. J. Solid State Chem., 2008, 12(11): 1435-1443

[22] Praveen B M, Venkatesha T V. Electrodeposition and properties of Zn-nanosized TiO2 composite coatings[J]. Appl. Surf. Sci., 2008, 254(8): 2418-2424

[23] Zhou M, Tacconi N R de, Rajeshwar K. Preparation and characterization of nanocrystalline composite (nanocomposite) films of titanium dioxide and nickel by occlusion electrodeposition[J]. J. Electroanal. Chem., 1997, 421: 111-120

[24] Baghery P, Farzam M, Mousavi A B, et al. Ni-TiO2 nano-composite coating with high resistance to corrosion and wear[J]. Surf. Coat. Technol., 2010, 204(23): 3804-3810

[25] Park H, Kim K Y, Choi W. A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel[J]. Chem. Commun., 2001, 3: 281-282

[26] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38

[27] Jing L Q, Xu Z L, Sun X J, et al. Photocatalytic activity of ZnO and TiO2 particles and their deactivation and regeneration[J]. Chin. J. Catal., 2003, 2(3): 175-179

     (井立强, 徐自力, 孙晓君等. ZnO和TiO2粒子的光催化活性及其失活与再生[J]. 催化学报, 2003, 2(3): 175-179)

[28] Deguchi T, Imai K, Matsui H, et al. Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel[J]. J. Mater. Sci., 2001, 36(19): 4723-4729
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] XIE Xuan, LIU Li, WANG Fuhui. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[8] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
No Suggested Reading articles found!