Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (4): 333-337    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF SOLID SOLUTION TEMPERATURE ON PITTING CORROSION BEHAVIOR OF 15-5PH PRECIPITATION HARDENED STAINLESS STEEL
ZHOU Xianliang1,2, NIE Lun2, HUA Xiaozhen2, LIU Zhiyong2, CUI Xia2, PENG Xinyuan2
1. Key Laboratory of Nondestructive Test, Ministry of Education, Nanchang Hangkong University, Nanchang 330063
2. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063
Download:  PDF(1763KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The pitting corrosion resistance property of 15-5PH martensite precipitation hardened stainless steel with direct aging treatment after different solution temperature was investigated by immersion test, polarization curves,cyclic polarization curves and electrochemical spectroscopy. The microstructure and phases precipitated was studied by optical metallography, X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results show that with the solution temperature ascending, the self-corrosion potential became negative, the self-corrosion current and the corrosion rate increased but the pitting corrosion resistance property was decreased. The microstructure of aging treatment after different solution temperature was lath martensite and a few austenite. The NbC carbide were observed in the specimen quenched and aged at 550℃ for 4 h. The homogeneity of the microstructure and less precipitates solution treatment at 1000℃ had the best pitting corrosion resistance. When solution treatment at 1070℃ the Cu-rich precipitates distributed, but Cu precipitation led to the declination of pitting corrosion resistance.
Key words:  solid solution temperature      15-5PH martensite precipitation hardened stainless steel      pitting corrosion     
Received:  25 May 2011     
ZTFLH: 

TG156

 
Corresponding Authors:  ZHOU Xianliang     E-mail:  nielun23@126.com

Cite this article: 

ZHOU Xianliang, NIE Lun, HUA Xiaozhen, LIU Zhiyong, CUI Xia, PENG Xinyuan. EFFECTS OF SOLID SOLUTION TEMPERATURE ON PITTING CORROSION BEHAVIOR OF 15-5PH PRECIPITATION HARDENED STAINLESS STEEL. J Chin Soc Corr Pro, 2012, 32(4): 333-337.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I4/333

[1] Liu Z B,Liang J X,Yang Z Y,et al. Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J].J. Aeronaut. Mater., 2011,31(1): 7-12

    (刘振宝, 梁剑雄, 杨志勇等. 碳含量对15-5PH沉淀硬化不锈钢板材的组织与性能的影响[J]. 航空材料学报, 2011, 31(1): 7-12)

[2] Yang S W, Guo Y H, Zhang T Y, et al. Effect of solution treatment on corrosion resistance property and microstructure of  0Cr17Ni4Cu4Nb steel[J]. Develop. Appl. Mater., 2010, 25(6): 1-5

    (杨世伟, 郭亚欢, 张天宇等. 固溶处理对0Cr17Ni4Cu4Nb钢耐腐蚀性能及组织的影响[J]. 材料开发与应用, 2010, 25(6): 1-5)

[3] Hbibi Bajguirani H R. The effect of aging upon the microstructure and mechanical properties of type 15-5PH stainless steel[J]. Mater. Sci. Eng., 2002, A338: 142-159

[4] Abdelshehid M, Mahmodieh K, Mori K, et al. On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel[J]. Eng. Failure Anal., 2007, 14: 626-631

[5] Kamila Amato de Campos, Celso Yoshino, Luis Rogerio de Olivera Hein. Fractal behavior throughout stretch zone of 15-5PH steel under elastic-plastic loading conditions[J]. Mater. Sci. Eng., 2009, A525: 37-41

[6] Tavares S S M, Silva F J, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel[J]. Corros. Sci., 2010, 52(11): 3835-3839

[7] Huang G Q, Jin W X, Hou W T. A study on relationship between corrosion resistance and corrosion potential of stainless in seawater[J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 35-39

    (黄桂桥, 金威贤, 候文泰. 不锈钢在海水中的腐蚀性与腐蚀电位的关系[J]. 中国腐蚀与防护学报, 2000, 20(1): 35-39)

[8] Song S Z. Corrosion Electrochemical Research Methods[M]. Beijing: Chemical Industry Press, 1988: 187-188

    (宋诗哲. 腐蚀电化学研究方法[M]. 北京: 化学工业出版社, 1988: 187-188)

[9] Raja K S, Rao K P. Pitting behavior of type 17-4PH stainless steel weldments[J]. Corros. Sci., 1995, 51(8): 586-592
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[9] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[10] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[11] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[12] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[13] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[14] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[15] Jingli HAO,Yongjing GAO,Zehua DONG. Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy[J]. 中国腐蚀与防护学报, 2015, 35(6): 525-534.
No Suggested Reading articles found!