Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 28-33    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CHARACTERISTICS OF 304 STAINLESS STEEL UNDER A DROPLET OF NaCl
LIU Yuanyuan, WANG Wei, WANG Yanhua, WANG Jia
College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
Download:  PDF(4912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The wire beam electrode (WBE) was used to study the distributions of the electrochemical parameters of 304 stainless steel under a droplet of NaCl as well as their variations with the corrosion time. It was found that the distributions of the corrosion potential and the galvanic current were inhomogeneous with local anodic and cathodic zones appeared randomly. Moreover, the polarity of local zones changed with the evolution of corrosion process. The corrosion degree and inhomogeneity increased firstly, then decreased afterward with the increase of time. Stainless steel exhibited the highest anodic current density after exposure for 12 hours.
Key words:  stainless steel      droplet      wire beam electrode      corrosion potential      galvanic current     
Received:  29 October 2010     
ZTFLH: 

TG172.3

 
Corresponding Authors:  WANG Yanhua     E-mail:  wyhazz@163.com

Cite this article: 

LIU Yuanyuan, WANG Wei, WANG Yanhua, WANG Jia. ELECTROCHEMICAL CHARACTERISTICS OF 304 STAINLESS STEEL UNDER A DROPLET OF NaCl. J Chin Soc Corr Pro, 2012, 32(1): 28-33.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/28

[1] Skerry B S, Johnson J B, Wood G C. Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres I. General behavior of iron [J]. Corros. Sci., 1988, 28 (7): 657-695

[2] Zakipour S, Leygraf C. Quartz crystal microbalance applied to studies of atmospheric corrosion of metals [J]. Br. Corros.J.,1992, 27 (4): 295-298

[3] Neufeld A K, Cole I S, Bond A M. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J].Corros. Sci., 2002, 44(3): 555-572

[4] Wang J. Role of salt particle deposition in the initiation and propagation of atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 155-158

    (王佳.无机盐微粒沉积和大气腐蚀的发生与发展 [J]. 中国腐蚀与防护学报, 2004,24 (3): 155-158)

[5] Dubuisson E, Lavie P, Dalard F, et al. Corrosion of galvanised steel under an electrolytic drop [J]. Corros. Sci., 2007,49(2): 910-919

[6] Dubuisson E, Lavie P, Dalard F, et al. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet [J]. Electrochem. Commun., 2006, 8(6): 911-915

[7] Wang R G, Kido M. Corrosion behavior of pure iron by different droplet volume of sulfuric acid solution [J]. Mater.Trans., 2007, 48 (6): 1451-1457

[8] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49(3): 1394-1407

[9] Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet [J]. Corros.Sci., 2010, (52): 2035-2043

[10] Tsuru T, Tamiya K I, Nishikata A. Formation and growth of micro-droplets during the initial stage of atmospheric corrosion [J]. Electrochim. Acta. 2004, 49(17-18): 2709-2715

[11] Tan Y J, Liu T, Aung N N. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases [J]. Corros. Sci., 2006, 48(1):53-66

[12] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape [J]. Electrochim. Acta, 2011, 56(4): 1866-1872

[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion [J]. Corros. Sci., 2010, 52 (4): 1277-1285

[14] Zhang X, Wang W, Wang J. A novel device for the wire beam electrode method and its application in the ennoblement study [J]. Corros. Sci., 2009, 51 (6):1475-1479

[15] Zhang X, Wang W, Wang J. Characterization of electrochemical heterogeneity of interface of an artificial biofilm/metal by means of a wire beam electrode [J]. Corros. Sci.Prot. Technol., 2009, 21(3): 242-244

     (张霞, 王伟, 王佳.采用丝束电极研究硫酸盐还原菌生物膜的电化学不均匀性 [J].腐蚀科学与防护技术, 2009, 21(3): 242-244)

[16] Wang W, Wang J, Zhang X. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method [J]. Electrochim.Acta, 2009, 54(23): 5598-5604

[17] Zhong Q D. Study of corrosion behavior of mild steel and copper in thin film salt solution using the wire beam electrode [J] Corros. Sci., 2002, 44(6): 909-916

[18] Zhong Q D, Zhang Z. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode [J] Corros. Sci., 2002, 44(12): 2777-2787

[19] Zhong Q D. Electrochemical technique for investigating temporarily protective oil coatings [J]. Prog. Org. Coat., 1997, 30(4): 213-218

[20] Kolotyrkin J M. Pitting corrosion of metals [J]. Nat. Assoc. Corros. Eng., 1963, 19(8): 261-268

[21] Szklarska-Smialowsk Z, Mankowski J. Effect of temperature on the kinetics of developments of pits in stainless steel in 0.5 N NaCl+0.1 N H2SO4 solution [J]. Corros. Sci., 1972, 12(12):925-934
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[12] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
No Suggested Reading articles found!