Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (5): 329-335    DOI:
Research Articles Current Issue | Archive | Adv Search |
EIS STUDY ON THE DETERIORATION PROCESS OF ORGANIC COATINGS UNDER IMMERSION AND CYCLIC WET-DRY CONDITIONS
ZHANG Wei1,2, WANG Jia2,3, ZHAO Zengyuan4, LIU Xueqing5
1. Qingdao Marine Corrosion Institute, Central Research Institute for Steel and Iron, Qingdao 266071
2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003
3. State Key Laboratory for Corrosion and Protection, Shenyang 110015
4. Offshore Oil Engineering Qingdao Co., Ltd, Qingdao 266555
5. National Oceanographic Center, Qingdao 266071
Download:  PDF(1496KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Comparing between immersed and cyclic wet-dry conditions, the deterioration processes of the organic coatings on carbon steel surface have been comparatively studied by using electrochemical impedance spectroscopy (EIS). The wet-dry cycles were carried out in the alternating conditions by immersing in a 3.5% sodium chloride solution and drying at 25° and 50% RH for 4 h respectively. Coating resistance, Rf, coating capacitance, Cf, and double layer capacitance, Cd, were monitored continuously and separately under above two conditions. The percentages of the interface active area, Aw, were estimated from the obtained double layer capacitance, Cd. According to the EIS characteristics, the entire deterioration processes under two above-mentioned conditions can be divided into three main stages, consisting of the medium penetration into coatings, corrosion initiation and corrosion extension underlying coatings. In comparison with the immersed, the wet-dry cycles greatly accelerated the entire deterioration process; especially the corrosion initiation and the corrosion extension periods, leading the paint system lose its anti-corrosive performance in a short period. However, the underlying substrate corrosion of the cyclic coatings was far less serious than the immersed; even the delaminating area was seven times more than the immersed. The acceleration mechanism of the coatings and underlying metal corrosion under wet-dry cycles was discussed based on the above results.
Key words:  organic coatings      wet-dry cycles      electrochemical impedance spectroscopy     
Received:  13 April 2010     
ZTFLH: 

TG174.46

 
Corresponding Authors:  WANG Jia     E-mail:  jwang@mail.ouc.edu.cn

Cite this article: 

ZHANG Wei, WANG Jia, ZHAO Zengyuan, LIU Xueqing. EIS STUDY ON THE DETERIORATION PROCESS OF ORGANIC COATINGS UNDER IMMERSION AND CYCLIC WET-DRY CONDITIONS. J Chin Soc Corr Pro, 2011, 31(5): 329-335.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I5/329

[1] Deflorian F, Fedrizzi L, Bonora P L. Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints [J]. Corros. Sci., 1996, 38: 1697-1708

[2] Destreri M D G, Vogelsang J, Fedrizzi L, et al. Water up-take evaluation of new waterborne and high solid epoxy coatings [J]. Prog. Org. Coat., 1999,37: 69-81

[3] Yang X F, Tallman D E, Croll S G, et al. Morphological changes in polyurethane coatings on exposure to water [J]. Polym. Degrad. Stab., 2002,77: 391-396

[4] Park J H, Lee G D, Ooshige H, et al. Monitoring of water uptake in organic coatings under cyclic wet--dry condition [J]. Corros. Sci., 2003,45: 1881-1894

[5] Stratmann M, Streckel H, Kim K T, et al. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅲ.the measurement of polarization curves on metal surfaces which are covered by thin electrolyte layers [J]. Corros. Sci., 1990, 30: 715-734

[6] Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part 3 Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface [J]. Corros. Sci.,1999, 41: 599-620

[7] Furbeth W, Stratmann M. The delamination of polymeric coatings from electrogalvanised steel--a mechanistic approach.: Part 1: delamination from a defect with intact zinc layer [J]. Corros.Sci., 2001, 43: 207-227

[8] Tomashov N D. Development of the electrochemical theory of metallic corrosion [J]. Corrosion,1964, 20: 7t-14t

[9] Tsuru T, Nishikata A, Wang J. Electrochemical studies on corrosion under a water film [J]. Mater.Sci. Eng., 1995, A198: 161-168

[10] Mansfeld F. Corrosion Processes [M]. London:Applied Science Publishers, 1982

[11] Wang J, Tsuru T. An investigation on oxygen reduction under thin electrolyte layer using Kelvin probe reference electrode [J]. J. Chin. Soc.Corros. Prot., 1995, 15(3): 180-188

     (王佳,水流彻. 使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响 [J]. 中国腐蚀与防护学报, 1995, 15(3): 180-188)

[12] Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet--dry conditions influence of time of wetness [J]. Corros. Sci., 2004, 46: 169-181

[13] Veracruz R P, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environment [J]. Corros. Sci., 1998, 40(1): 125-139

[14] Zhang J Q, Cao C N Study and evaluation on coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19(3): 99-104

     (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19(3): 99-104)

[15] Gao Z M, Song S Z, Xu Y H. Electrochemical impedance spectroscope analysis of coating deterioration process with Kohonen neural networks [J]. J. Chin.Soc. Corros. Prot., 2005, 25(2): 106-109

     (高志明, 宋诗哲, 徐云海. 涂层失效过程电化学阻抗谱的神经网络分析 [J]. 中国腐蚀与防护学报, 2005, 25(2): 106-109)

[16] Zhao X, Wang J, Wang Y H, et al. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network [J].Electrochem. Commun., 2007, 9: 1394-1399

[17] Zhang W, Wang J, Zhao Z Y, et al. Study on deterioration process of organic coatings by EIS and SKP [J]. Chem. J. Chin. Univ., 2009,30: 762-766

     (张伟,王佳,赵增元等. 有机涂层失效过程的电化学阻抗和电位分布响应特征 [J]. 高等学校化学学报, 2009, 30: 762-766)

[18] Howard R L, Lyon S B, Scantlebury J D. Accelerated tests for prediction of cut edge corrosion of coil-coated architectural cladding.Part II: Cyclic immersion [J]. Prog. Org.Coat., 1999, 37: 99-106

[19] Gamal A, El-Mahdy, Nishikata A, et al. Electrochemical corrosion monitoring of galvanized steel under cyclic wet--dry conditions [J]. Corros.Sci., 2000, 42: 183-194

[20] Gamal A, El-Mahdy. Atmospheric corrosion of copper under wet/dry cyclic conditions [J].Corros. Sci., 2005, 47: 1370-1383

[21] Lendvay-Gyorik G, Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry [J].Prog. Org. Coat., 2006, 56: 304-310

[22] Deflorian F, Fedrizzi L, Rossi S, et al.Organic coating capacitance measurement by EIS:ideal and actual trends [J]. Electrochim.Acta, 1999, 44: 4243-4294

[23] Morcillo M. Soluble salts: their effect on premature degradation of anticorrosive paints [J].Prog. Org. Coat., 1999, 36: 137-147

[24] Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1-28

[25] Battocchi D, Tallman D E, Bierwagen G P. Electrochemical behavior of a Mg-rich primer in the protection of Al alloys [J]. Corros Sci.,2006, 48: 1292-1306

[26] Poelman M, Olivier M G, Gayarre N, et al. Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium [J]. Prog. Org.Coat., 2005, 54: 55-62

[27] Deflorian F, Rossia S, Fedrizzi L, et al. EIS study of organic coating on zinc surface pretreated with environmentally friendly products [J]. Prog. Org. Coat., 2005, 52: 271-279
[1] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[2] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[4] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[5] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[9] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
[15] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
No Suggested Reading articles found!