Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (2): 107-113    DOI:
Research Articles Current Issue | Archive | Adv Search |
SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM
LI Chaoxing1; LI Jinfeng1;2; BIRBILIS Nick3; JIA Zhiqiang1; ZHENG Ziqiao1;2
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. Key Laboratory of Nonferrous Metal; Materials Science and Engineering;Ministry of Education; Central South University; Changsha 410083
3. ARC Centre of Excellence for Design in Light Metals; Department of Materials Engineering;Monash University; 3800. Australia
Download:  PDF(2759KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The potentiodynamic scanning curves and the electrochemical coupling behaviors of constituent phases at the grain boundary of Al-Mg-Si alloy were investigated. The corrosion mechanism of Al-Mg-Si alloys different ratio of Mg to Si was analyzed. The results show that the Si particle is cathodic to the Al-base and causes the anodic dissolution of Al-base at its adjacent periphery. At the beginning, the precipitate of Mg2Si is anodic to the Al-base and corrosion occurs on its surface. However, during its corrosion process, its potential moves to a positive direction with immersion time increasing, due to the preferential dissolution of Mg and the enrichment of Si, which makes Mg2Si become cathodic to Al- base and leads to the anodic dissolution of the Al-base at its adjacent periphery at a later stage. At the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si higher than 1.73, the Mg-and-Si contained precipitates are distributed discontinuously, resulting in that they are not sensitive to intergranular corrosion. There exist Mg-and-Si-contained precipitates and Si particles at the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si less than 1.73, corrosion occurs firstly on the surface of Mg2Si. Meanwhile, the Si particle leads to the great anodic dissolution of the precipitate-free-zone(PFZ) at its adjacent periphery. The Si particle also accelerates the preferential dissolution of Mg in Mg2Si precipitate, expediting the polarity transformation between Mg2Si and the PFZ. As a result, the corrosion development along the PFZ at the adjacent of Mg2Si particle is enhanced.

Key words:  Al-Mg-Si alloys      intergranular corrosion      corrosion mechanism     
Received:  17 December 2008     
ZTFLH: 

TG171

 
Corresponding Authors:  LI Jinfeng     E-mail:  lijinfeng@mail.cus.edu.cn

Cite this article: 

LI Chaoxing; LI Jinfeng; BIRBILIS Nick; JIA Zhiqiang; ZHENG Ziqiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM. J Chin Soc Corr Pro, 2010, 30(2): 107-113.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I2/107

[1] Osaki S H, Kinoshita K, Naganuma D.Intergranular corrosion and SCC properties of Al-Mg-Si alloy sheets [J]. J. Inst. Light Met., 2003, 53(4): 157-162
[2] Es-Said O S,Frazier W E, Lee E W. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy [J]. JOM. 2003, (1): 45-48
[3] Zheng Z Q, Li H Y, Mo Z M. Retrogression and reaging treatment of a 7055 type aluminum alloy [J]. Chin. J. Nonferrous Met., 2001, 11(5): 771-775
    (郑子樵, 李红英, 莫志民. 一种7055型铝合金的RRA处理 [J]. 中国有色金属学报,2001, 11(5): 771-775)
[4] Ru J G, Yi L N,Zhang L S. A study of the ultra high strength aluminium alloy heat treatment process [J]. J.Mater Eng., 1999, (2): 37-39
    (汝继刚, 伊琳娜, 张禄山. 超高强铝合金热处理工艺研究 [J]. 材料工程, 1999, (2): 37-39)
[5] Pzark J K, Ardell A J. Microstructures of the commercial 7075 Al,alloy in the T651 and T7 tempers [J]. Metall. Trans., 1983, 14: 1957-1965
[6] Meng Z F, Zheng Y, Long H W, et al, Hardness changes of Al-Zn-Mg alloy during retrogression and reaging [J]. Acta Metall. Sin., 1997, 33(5): 479-484
    (孟昭富, 郑勇, 龙厚文等. 再时效-回归-再时效处理过程中Al-Zn-Mg 系合金硬度的改变 [J]. 金属学报, 1997, 33(5): 479-484)
[7] Zeng Y, Yin Z M, Zhu Y Z, et al. Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy [J]. Chin. J. Nonferrous Met., 2004, 14(7): 1188-1194
    (郑渝, 尹志民, 朱远志等. RRA处理对超高强铝合金微观组织和性能的影响 [J]. 中国有色金属学报, 2004, 14(7): 1188-1194)
[8] Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium ally with various aging treatements [J]. Trans.Nonferrous Met. Soc. China, 2008, 18: 755-762
[9] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Fabrication (2nd) [M]. ChangSha: Central South University Press, 2000: 132
    (王祝堂, 田荣璋. 铝合金及其加工手册(第二版)[M]. 长沙:中南大学出版社,2000:132)
[10] Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys [J]. J.Electrochem. Soc., 2005, 152(4), B140-B151
[11] Li J F, Zheng Z Q, Li S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]. Corros. Sci., 2007, 49: 2436-2449
[12] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase(Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144(8): 2621-2628
[13] Shao M H, Fu Y, Hu R G, et al. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique [J]. Mater. Sci. Eng., 2003, A344: 323-327
[14] Li J F, Zheng Z Q, Jiang N, et al. Study on localized corrosion mechanism of 2××× series Al alloy containing S(Al2CuMg) and θ′(Al2Cu) precipitates in 4.0% NaCl solution at pH=6.1 [J]. Mater. Chem.Phys., 2005, 91(2-3): 325-329
[15] Mizuno K, Nylund A, Olefjord I. Surface reactions during pickling of an aluminum-magnesium-silicon alloy in phosphoric acid [J]. Corros. Sci., 2001, 43(2): 381-396
[16] Li J F, Zheng Z Q, Ren W D, et al. Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys [J]. Trans. Nonferrous Met. Soc. China,2006, 16: 1268-1273
[17] Wang Z H, Zhou G Y. Controlling composition of 6063 aluminium alloy based on production process and material application [J]. Light Alloy Fabr. Technol., 2000, (12): 31-32
     (王宗和, 周光永. 根据工艺和材料用途控制6063铝合金的成分 [J]. 轻合金加工技术, 2000, (12): 31-32

[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[8] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[9] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[10] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[11] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[12] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[13] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[15] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
No Suggested Reading articles found!