Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (2): 114-118    DOI:
Research Articles Current Issue | Archive | Adv Search |
CELLULAR AUTOMATA SIMULATION ON THE EARLY STAGES OF METAL CORROSION IN MOIST ATMOSPHERIC ENVIRONMENT
LI Lei; LI Xiaogang; XIAO Kui; DONG Chaofang
Corrosion and Protection Center;School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Download:  PDF(1365KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion was widely occurred when metallic materials were used in natural environment. This paper presents a cellular automata model which simulates the early stage of metal corrosion in moist atmospheric environment. First, the basic principles of cellular automata are introduced, and the application of cellular automata in corrosion field is briefly summarized. Then according to the mechanism of metal corrosion in moist atmospheric environment, the cellular automata model which will simulate the electrochemical reactions and diffusion steps of metal corrosion is proposed. With a series of simulation, the optimization factors which were used to simulate the evolvement of corrosion pit appearance are established. At the same time, the concentrations of different cells in electrolyte are simulated, and the trend of the concentration curve is analyzed contrast to the lab experiment.

Key words:  cellular automata      atmospheric corrosion      computer simulation     
Received:  28 April 2008     
ZTFLH: 

TG174.3

 
Corresponding Authors:  LI Xiaogang     E-mail:  lixiaogang99@263.net

Cite this article: 

LI Lei; LI Xiaogang; XIAO Kui; DONG Chaofang. CELLULAR AUTOMATA SIMULATION ON THE EARLY STAGES OF METAL CORROSION IN MOIST ATMOSPHERIC ENVIRONMENT. J Chin Soc Corr Pro, 2010, 30(2): 114-118.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I2/114

[1] Cordoba-Torres P, Nogueira R P, de Miranda L, et al.Cellular automaton simulation of a simple corrosion mechanism:mesoscopic heterogeneity versus macroscopic homogeneity [J].Electrochim. Acta, 2001, 46: 2975-2989
[2] Cordoba-Torres P, Nogueira R P, Faire'n V.Forecasting interface roughness from kinetic parameters of corrosion mechanisms [J].J. Electro. Chem., 2002, 529: 109-123
[3] Cordoba-Torres P, Nogueira R P, Fair'en V.Fractional reaction order kinetics in electrochemical systems involving single-reactant, bimolecular desorption reactions [J]. J. Electro.Chem., 2003, 560: 25-33
[4] Cordoba-Torres P, Nogueira R P, Faire'n V.Non-diffusive spatial segregation of surface reactants in corrosion simulations [J]. J. Electro. Chem., 2004, 571: 189-200
[5] Pidaparti R M, Fang L, Palakal M J. Computational simulation of multi-pit corrosion process in materials [J]. Comp.Mater. Sci., 2008, 41: 255-265
[6] Pidaparti R M, Palakal M J, Fang L. Cellular automation approach to model aircraft corrosion pit damage growth [J]. AIAA J., 2004, 42: 2562-2569
[7] Pidaparti R M, Puri A, Palakal M J, et al.Three-dimensional computational simulation of surface corrosion damage [J]. AIAA J., 2007, 45: 2575-2579
[8] Vautrin-Ul C, Taleb A, Stafiej J, et al. Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the Faraday law [J]. Electrochim.Acta, 2007, 52: 7802-7810
[9] Vautrin-Ul C, Chausse' A, Stafiej J. Numerical simulations of corrosion processes-properties of the corrosion front and formation of islands [J]. Condensed Matter Phys., 2004, 7: 813-828
[10] Taleb A, Chausse' A, Dymitrowska M, et al.Simulations of corrosion and passivation phenomena: diffusion feedback on the corrosion rate [J]. J. Phys. Chem., 2004, 108B: 952-958
[11] Saunier J, Chausse' A, Stafiej J, et al. Simulations of diffusion limited corrosion at the metal\ environment interface [J]. J. Electro. Chem., 2004, 563: 239-247
[12] Saunier J, Dymitrowska M, Chausse' A, et al.Diffusion, interactions and universal behavior in a corrosion growth model [J]. J. Electro. Chem., 2005, 582: 267-273
[13] Malki B, Baroux B. Computer simulation of the corrosion pit growth [J]. Corros. Sci., 2005, 47: 171-182
[14] Chen H J, Chen Y T, Zhang J S. Cellular automaton modeling on the corrosion/oxidation mechanism of steel in liquid metal environment [J]. Prog. Nucl. Energy, 2008, 50: 587-593
[15] Xiao J M. Pandect of Corrosion---The Corrosion and Control Methods of Materials Corrosion [M]. Beijing: Chemical Industry Press. 1994
     (肖纪美. 腐蚀总论---材料的腐蚀及其控制方法 [M]. 北京: 化学工业出版社. 1994)
[16] Xiao K. The behaviors and mechanism of the initial stages of atmospheric corrosion for metals [D]. Beijing: University of Science and Technology Beijing, 2006)
     (肖葵. 典型金属材料大气腐蚀初期行为和机理研究 [D]: 博士学位论文. 北京: 北京科技大学, 2006)

[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] Mengcheng CHEN, Qingqing WEN. Cellular Automata Simulation of Corrosion Process for Steel[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
[8] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[13] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
No Suggested Reading articles found!