Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (1): 19-23    DOI:
技术报告 Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S
ZHENG Chuanbo1;2;HUANGYanliang1;HUO Chunyong3;YU Qing1;2;ZHU Yongyan1;2
1.Institute of Oceanology;Chinese Academy of Sciences; Qingdao 266071
2.Graduate University of Chinese Academy of Sciences; Beijing 100039
3.Tubular Goods Research Center of China National Petroleum Corporation; Xi'an 710065
Download:  PDF(1106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Susceptibility to SCC of X56 grade pipeline steel was investigated by slow strain rate test (SSRT) and Devnathan-Stachurski double electrolytic cell in atmospheric environment containing H2S. The results showed that the fracture strain decreased while the strain rate decreased in the same H2S concentration environment. And the fracture strain decreased with increasing the concentration of H2S at the same strain rate 6.67x10-7 s-1. The SEM fractographs of the specimens also showed that the susceptibility to stress corrosion cracking (SCC) increased. The hydrogen permeation test showed that hydrogen permeation current did not increase with increasing the concentration of H2S in the first wet-dry cycle because of the formation of product film. The longer the experiment time, the more the hydrogen atom permeated through the specimen. This trend partially attribute to the surface coverage ratio (θ) of H2S and the corrosion product film.

Key words:  hydrogen sulfide      stress corrosion cracking      hydrogen embrittlement      atmospheric environment     
Received:  16 April 2007     
ZTFLH: 

P734

 
  P755.3

 
Corresponding Authors:  HUANGYanliang     E-mail:  hyl@ms.qdio.ac.cn

Cite this article: 

ZHENG Chuanbo HUANGYanliang HUO Chunyong YU Qing ZHU Yongyan. STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S. J Chin Soc Corr Pro, 2009, 29(1): 19-23.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I1/19

[1] Van Gelder K,Erlings J G,Damen J W M,et al. The stress corrosion cracking of duplex stainless steel in H2S/CO2/Cl- environments [J]. Corros. Sci.,1987, 27(10-11):1271-1279
[2] Barteri M,Mancia F,Tamba A,et al. Engineering diagrams and sulphide stress corrosion cracking of duplex stainless steels in deep sour well environment [J]. Corros. Sci.,1987,27(10-11):1239-1250
[3] Huang Y L,Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci.,2005,47(6):1545-1554
[4] Devnathan M A V,Stachurski Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J].J. Electrochem,Soc.,1963,110(8): 886-894
[5] GB17378. 4--1998,Seawater analysis--Part 4 of criterion of marine monitoring[S].
(GB17378. 4--1998,海洋监测规范第4部分~海水分析[S].)
[6] MasatoKobayashi,Atsushi Nishikata,Tooru Tsuru. Hydrogen embrittlement of reinforced steels in high alkaline chloride environments[A]. 45th Forum on Engineering Science and Technology, Chinese Academy of Engineering & 3rd international symposium on marine corrosion and control[C]. Qingdao,2006,93-97
[7] Tsai S Y,Shih H C. A statistical failure distribution and lifetime assessment of the HSLA steel plates in H2S containing environments[J]. Corros. Sci.,1996,38(5): 705-719
[8] Qiao L J,Wang Y B,Chu W Y. Mechanism of Stress Corrosion[M]. Beijing:Science Press,1993:83
(乔利杰,王燕斌,褚武扬. 应力腐蚀机理[M]. 北京:科学出版社,1993:83)
[9] Li M Q,Cai Z C,He X Y. Electrochemical study of 16Mn steel under H2S thin electrolyte film[J]. Mater. Prot., 2006,39(1):1-5
(李明齐,蔡铎昌,何晓英. H2S薄层液膜下16Mn钢腐蚀的电化学研究[J]. 材料保护,2006,39(1):1-5)
[10] Cao C N. Corrosion Electrochemistry[M]. Beijing: Chemistry Industry Press,1995,14
(曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995,14)
[11] Li G M,Liu L W,Zheng J T. Corrosion behavior of carbon steel in high pressure dioxide saturated NaCl solutions containing hydrogen sulfide[J]. J. Chin. Soc. Corros. Prot.,2000,20(4):204-209
(李国敏,刘烈伟,郑家棠.碳钢在硫化氢及高压二氧化碳饱 和的NaC1溶液中的腐蚀行为[J].中国腐蚀与防护学报, 2000,20(4):204-209)
[12] Ma H Y,Cheng X L,Li G Q,et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros.Sci.,2000,42(10):1669-1683

 

[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[10] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[11] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[12] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[14] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[15] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
No Suggested Reading articles found!