Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (6期): 345-350    DOI:
研究报告 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF ALUMINIUM ALLOYS AFTER CYCLIC WET-DRY IMMERSION TEST IN 0.02 mol/L NaHSO3 SOLUTION
ZHOU Herong1;3;LI Xiaogang1;2;DONG Chaofang1;MA Jian3;LU Qikai3;FENG Hao3
1.Corrosion and Protection Center;University of Science and Technology Beijing; Beijing 100083
2.Beijing Key Laboratory for Corrosion; Erosion and Surface Technology; University of  Science and  Technology Beijing; Beijing 100083
3.State Key Laboratory of Environmental Adaption  for Industrial Products; China National Electric Apparatus Research Institute; Guangzhou 510063
Download:  PDF(1324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behaviors of aluminium alloys 1060,2A12 and 7A04 under cyclic wet-dry immersion conditions have been investigated in 0.02 mol/L sodium sulfite solution by the mass loss method and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to observe the surface morphology;  energy dispersive X-ray detector (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to analyze the corrosion products. We also tested the mechanical capability of experimental materials. The results showed that corrosion product was increasing with testing hours prolonging, mass loss adding, strength and elongation percentage declining. Surface observation revealed that corrosion product was agglomerated and accidented, extending forth. The main corrosion product is alumina and aluminium sulfate hydrate. The results of EIS indicated that corrosion rate is highest in 360 hour. Corrosion resistance of aluminium 1060 was best in 0.02 mol/L sodium sulfite solution, but that of aluminium alloy 7A04 was worst.

Key words:  aluminium alloys      cyclic wet-dry immersion test      mass loss method      EIS     
Received:  28 March 2007     
ZTFLH: 

TG172

 
Corresponding Authors:  ZHOU Herong   

Cite this article: 

ZHOU Herong LI Xiaogang DONG Chaofang MA Jian LU Qikai FENG Hao. CORROSION BEHAVIOR OF ALUMINIUM ALLOYS AFTER CYCLIC WET-DRY IMMERSION TEST IN 0.02 mol/L NaHSO3 SOLUTION. J Chin Soc Corr Pro, 2008, 28(6期): 345-350.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I6期/345

[1]Zhang X Y,An B G,Han E H,et al.Runoff and corrosion of material due to acid rain[J].Corros.Sci.Prot.Technol.,2002,14(3):157-160(张学元,安百刚,韩恩厚等.酸雨对材料的腐蚀/冲刷研究现状[J].腐蚀科学与防护技术,2002,14(3):157-160)
[2]Wang Z Y,Ma T,Han W,et al.Corrosion behavior of aluminium alloys LC4in simulated polluted atmospheric environment[J].J.Chin.Soc.Corros.Prot.,2005,25(6):321-326(王振尧,马腾,韩薇等.LC4铝合金在模拟污染大气环境中的腐蚀行为[J].中国腐蚀与防护学报,2005,25(6):321-326)
[3]Gonzalez J A,Morcillo M,Lopez V,et al.Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions,Part I:Visual observations and gravimetric results[J].Surf.Coat.Technol.,2002,153:225-234
[4]Mendoza A R,Corvo F.Outdoor and indoor atmospheric corrosion of nonferrous metals[J].Corros.Sci.,2000,42:1123-1147
[5]Gamal A EL-Mahdy,Kwang B Kim.AC impedance study on the atmospheric corrosion of aluminium under periodic wet-dry conditions[J].Electrochim.Acta,2004,49:1937-1948
[6]Cheng Y L,Zhang Z,Cao F H,et al.A study of the corrosion of aluminium alloy2024-T3under thin electrolyte layers[J].Corros.Sci.,2004,46(7):1649-1667
[7]Oesch S,Faller M.Environmental effects on materials:the effect of the air pollutants SO2,NO2,NO and O3on the corrosion of copper,zinc and aluminium,A short literature survey and results of laboratoryexposures[J].Corros.Sci.,1997,39(9):1505-1530
[8]CaiJP,LiuM,LuoZH,etal.Studyonacceleratedtestsforatmospheric corrosion of aeronautical aluminium alloy[J].J.Chin.Soc.Corros.Prot.,2005,25(5):262-266(蔡健平,刘明,罗振华等.航空铝合金大气腐蚀加速试验研究[J].中国腐蚀与防护学报,2005,25(5):262-266)
[9]Wang Z Y,Yu G C,Han W.Atmospheric corrosion law of three non-ferrous metals in Shenyang area[J].Chin.J.Nonferrous.Met.,2003,13(2):367-372(王振尧,于国才,韩薇.3种有色金属在沈阳地区的大气腐蚀规律[J].中国有色金属学报,2003,13(2):367-372)
[10]Li J F,Zheng Z Q,Ren W D.Function mechanism of secondary phase on localized corrosion of Al alloy[J].Mater.Rev.,2005,19(2):81-83(李劲风,郑子樵,任文达.第二相在铝合金局部腐蚀中的作用机制[J].材料导报,2005,19(2):81-83)
[11]Han W,Wang Z Y,Yu G C,et al.Corrosion of aluminium in wet/dry environment containing SO2[J].Chin.J.Nonferrous.Met.,2003,13:631-634(韩薇,王振尧,于国才等.铝在含SO2湿润/干燥环境中的腐蚀规律[J].中国有色金属学报,2003,13(2):631-634)
[12]Graedel T E.Corrosion mechanisms for aluminium exposed to the heat atmosphere[J].J.Electrochem.Soc.,1989,136(4):204c-212c
[13]An B G,Zhang X Y,Song S Z,et al.A study of electrochemical impedance spectrum for corrosion behavior of LY12aluminium alloy in simulated acid rain[J].J.Chin.Soc.Corros.Prot.,2003,23(3):167-170(安百刚,张学元,宋诗哲等.LY12铝合金在模拟酸雨溶液中的阻抗谱研究[J].中国腐蚀与防护学报,2003,23(3):167-170)
[14]Buchheit R G,Grant R P,Hlavaa P F,et al.Local dissolution phenomena associated with S phase(Al2CuMg)particles in aluminium alloy2024-T3[J].J Electrochem.Soc.,1997,144(8):2621-2628
[15]Buchheit R G,Martinez M A,Montes L P.Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-dish collection experiments[J].J.Electro-chem.Soc.,2000,147:119-128
[16]Liao C M,Olive J M,Gao M et al.In situ monitoring of pitting corrosion in aluminium alloy2024[J].Corrosion,1998,54:451-458x
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[4] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[5] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[6] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[7] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[8] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[9] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[10] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[11] Siqi WANG,Liwei ZHU,Fuchun LIU,En-Hou HAN,Zhenyu WANG,Zhouhai QIAN. Effect of Phosphoric Acid on Corrosion Performance of Vinyl Chloride-acrylic Copolymer Coating on Rust Steel[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.
[12] Min ZHENG,Qichao ZHANG,Yanliang HUANG,Dongzhu LU,Xiuming YU,Yuemiao LIU. Determination of Representative Ground-water for Corrosion Assessment of Candidate Materials Used in Beishan Area Preselected for High-level Radioactive Waste Disposal Repository[J]. 中国腐蚀与防护学报, 2016, 36(2): 185-190.
[13] Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[14] Ran XU,Jia WANG. Application of Local Electrochemical Impedance Technique in Corrosion Research[J]. 中国腐蚀与防护学报, 2015, 35(4): 287-296.
[15] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
No Suggested Reading articles found!