Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (6期): 325-330    DOI:
研究报告 Current Issue | Archive | Adv Search |
CORROSION INHIBITION PROPERTIES OF WATER SOLUBLE CHITOSAN AND ITS DEGRADATION PRODUCTS FOR MILD STEEL IN SEAWATER
YANG Xiaogang1;2;SHAO Liyan1;ZHANG Shufang1;2;JIAO Wei3;LI Yantao1;HOU Baorong1
1.Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071
2.Graduate School of the Chinese Academy of Sciences; Beijing 100049
3.College of Teachers; Qingdao University; Qingdao 266071
Download:  PDF(1511KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Water soluble chitosan was degraded to different molecular mass products by hydrogen peroxide at first, and then molecular mass of the degradation products were measured using terminal group analysis method. The inhibitive properties of water soluble chitosan and its degradation products for mild steel were studied by mass loss method and potentiodynamic polarization measurement. The inhibitive mechanisms were analyzed by polarization curves and ellipsometry method. The results show that with the increasing of hydrogen peroxide quantity the degradation products molecular mass were decreased. It was found that the highest inhibition effect of water soluble chitosan and its degradation products was obtained at 400 mg/L and the lower the molecular weight, the higher the inhibition efficiency, which was up to 64.35%. The results of polarization curve method show that the water soluble chitosan and its degradation products have similar inhibition tendency measured by mass loss method and are cathodic corrosion inhibitors. Ellipsometry experimental results indicated chitosan took place multi-layer absorption on carbon steel surface and inhibition film became thicker with molecular mass decreasing. The water soluble chitosan with low molecular mass are green corrosion inhibitor for mild steel in seawater.

Key words:  water soluble chitosan      degradation      inhibitory property      polarization curve      ellipsometry     
Received:  12 February 2007     
ZTFLH: 

TG174.42

 
Corresponding Authors:  yangxiaogang brhou@ms.qdio.ac.cn   

Cite this article: 

YANG Xiaogang SHAO Liyan ZHANG Shufang JIAO Wei LI Yantao HOU Baorong. CORROSION INHIBITION PROPERTIES OF WATER SOLUBLE CHITOSAN AND ITS DEGRADATION PRODUCTS FOR MILD STEEL IN SEAWATER. J Chin Soc Corr Pro, 2008, 28(6期): 325-330.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I6期/325

[1]Wei G,Xiong R C.Green chemistry and perspectives on corrosion protection[J].Corros.Sci.Prot.Technol.,2001,13(1):33-36(魏刚,熊蓉春.绿色化学与防腐蚀技术的发展方向[J].腐蚀科学与防护技术,2001,13(1):33-36)
[2]Mu Z J,Du M.The study of inhibitive mechanism of corrosion in-hibitors for carbon steel in natural seawater[J].J.Chin.Soc.Corros.Prot.,2005,25(4):205-208(穆振军,杜敏.天然海水中高效缓蚀剂对碳钢缓蚀作用的研究[J].中国腐蚀与防护学报,2005,25(4):205-208)
[3]Yu H,Wu J H,Qian J H,et al.Study on the inhibition behavior of a new kind corrosion inhibitor in seawater[J].J.Chin.Soc.Cor-ros.Prot.,2003,23(5):295-298(于辉,吴建华,钱建华等.一种海水缓蚀剂缓蚀行为的研究[J].中国腐蚀与防护学报,2003,23(5):295-298)
[4]Qian Y J,Yang X J,Li G.Studies on cooperative effect of Chi-tosan-HEDP compounds as corrosion inhibitor[J].Chem.Ind.Corros.Prot.,1996,3:21-24(钱倚剑,杨晓静,李刚.甲壳胺-HEDP复合缓蚀剂的协同效应研究[J].化工腐蚀与防护,1996,3:21-24)
[5]Jiang Y,Liu Y J,Feng Y F,et al.Study on peroxide degradation of chitosan and molecular weight polydispersity[J].J.Zhejiang.Inst.Sci.Technol.,2004,21(4):279-282(蒋英,刘羿君,封云芳等.过氧化氢氧化降解壳聚糖及其分子量分布的研究[J].浙江工程学院学报,2004,21(4):279-282)
[6]Meng X L,Chen G H,Hou J,et al.Discussion on determination of relative number average molecular weight of chiosan-oligosac-charide by terminal group analysis method[J].Period.Ocean.U-niv.Chin.,2005,35(1):142-144(孟显丽,陈国华,侯进等.关于端基分析法测定壳低聚糖的相对数均分子质量问题的探讨[J].中国海洋大学学报,2005,35(1):142-144)
[7]Huang Z Q,Zhang S T,Xie S F,et al.Spectroellipsometric studies on electrochemistry and its application[J].Electrochemistry,1999,5(3):247-253(黄宗卿,张胜涛,谢上芬等.椭圆偏振光谱方法对电化学的研究及应用[J].电化学,1999,5(3):247-253)
[8]Vedam k.Spectroscopic ellipsometry:a historical overview[J].Thin Solid Films,1998,313-314:1-9
[9]Jiang T D.Chitosan[M].Beijing:Chemical Industry Press,2006(蒋挺大.壳聚糖[M].北京:化学工业出版社,2006)
[10]Wei B M.The Theory and Application of Metal Corrosion[M].Beijing:Chemical Industry Press,1984(魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984)
[11]Cao C N.Corrosion Electrochemistry(2nd ed)[M].Beijing:Chemical Industry Press,2004(曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社,2004)
[12]Zhang S T,Xue M Y,Wang Y B,et al.BTA inhibition for cop-per alloy with in-situ ellipsometry[J].J.Chin.Soc.Corros.Prot.,2006,26(6):342-345(张胜涛,薛茗月,王艳波等.苯并三氮唑缓蚀铜合金的原位椭圆偏振研究[J].中国腐蚀与防护学报,2006,26(6):342-345)
[13]Zhou Q C,Xu N X.Uses of ellipsometry in the study of passive film on stainless steels[J].Corros.Prot.,1989,4:2-6(周庆初,徐乃欣.椭圆偏振法在不锈钢钝化膜研究中的应用[J].腐蚀与防护,1989,4:2-6)
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[6] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[7] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[8] Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Degradation Behavior of Solvent-free Epoxy Coatings in Simulated Flowing Sea Water with Sand by Different Flow Rates[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[9] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[10] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[11] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[12] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[13] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[14] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[15] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
No Suggested Reading articles found!