Please wait a minute...
J Chin Soc Corr Pro  2006, Vol. 26 Issue (1): 1-5     DOI:
Research Report Current Issue | Archive | Adv Search |
Sensitive Temperatures for Intergranular Corrosion of Typical Stainless Steels
;;
天津大学材料学院
Download:  PDF(521KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical potentiodynamic reactivation(EPR) test , sulphuric acid - sulphate of copper (GB4334.5-90) and scanning electron microscope were utilized in this paper to study the intergranular corrosion susceptibility of 202,304 austenitic stainless steels and 409,430 ferritic stainless steels at different sensitive heat treatment temperatures, at which intergranular corrosion will be induced. The results show that the sensitive temperature of austenitic stainless steels and that of ferritic stainless steels are different. the sensitive temperature of austenitic stainless steel is about 650℃, while that of ferritic stainless steel is around 950℃. The results provide scientific criterion for correctly evaluating the intergranular corrosion susceptibility of stainless steel and optimizing the production technology.
Key words:  sensitiving heat treatment      stainless steel      intergranular corrosion      
Received:  04 November 2004     
ZTFLH:  TG174.3  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. Sensitive Temperatures for Intergranular Corrosion of Typical Stainless Steels. J Chin Soc Corr Pro, 2006, 26(1): 1-5 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2006/V26/I1/1

[1]Taboda A,Prank L.Intergranular,corrosion in nuclear system,in-tergranular corrosion in stainless alloys[M].ASTM STP656.Steigerwald R F,ed.Philadelphia,PA:ASTM,1978,85
[2]Clark W L,Romero V M,Danko J C.Detection of sensitization instainless steels using electrochemical technique[A].Corrosion/77[C].Houston,TX:NACE,1977:180
[3]Clark W L,Cowan R L,Walker W L.Comparative methods formeasuring degree of sensitization in stainless steels,in intergranularcorrosion of stainless alloys[M].ASTM,STP 656.Steigerwald RF,ed.Philadelphia,PA:ASTM,1978,99
[4]JISG0575-1999 Corrosion Test Method for Stainless Steel Sul-phuric-Acid—Sulphate of Copper[S].(JISG0575-1999不锈钢硫酸-硫酸铜腐蚀试验方法[S].)
[5]GB4335-2000 Corrosion Test Method for Stainless Steel Sulphuric-Acid—Sulphate of Copper[S].(GB4335-2000不锈钢硫酸-硫酸铜腐蚀试验方法[S].)
[6]Cihal C,Desestret A,Froment M,Wagner G H.Tests for evaluationof sensibility of stainless steels to intergranular corrosion[A].Proc.5th European Corros.Cong[C].Paris,France:European Federationon Corrosion,1973:249
[7]Qin L Y,Dong Z D.Application of electrochemical method to evalu-ate intergranular corrosion susceptibility of stainless steels[J].Taigang Science and Technology,1991,3:80-86(秦丽雁,董征东.用电化学方法测量不锈钢晶间腐蚀的敏感性[J].太钢科技,1991,3:80-86)
[8]Nathalie Lopez,Mariano Cid,Monique Puiggali,Inaki Azkarate,Al-berto Pelayo.Application of double loop potential dynamic reactiva-tion test to austenitic and duplex[J].Mater.Sci.Eng.A,1997,229(1-2):123-128
[9]Xiao J M.Metallography of Stainless Steel[M].Beijing:MetallurgyIndustry Press,1983:246~248(肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,1983:246-248)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[12] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
No Suggested Reading articles found!