Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (5): 262-266     DOI:
Research Report Current Issue | Archive | Adv Search |
The Effect of Microorganism Attachmenet on the Open-circuit-potential of Passive Metals in Seawater
;;;
中科院青岛海洋研究所
Download:  PDF(186KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An investigation on the changes in open-circuit-potentials of passive metals in seawater was made with electrochemical technology and epifluoresence microscopy. It was found that in natural seawater, the open-circuit-potentials of passive metals shifted in noble direction gradually. The in-situ microscope observation showed that biofilm gradually formed on the metal surfaces with the increase of open-circuit-potentials and the change in bacteria number on metal surface was in the same manner with the ennoblement of the open-circuit=potentials. However, compared that in natural sea water, both open-circuit-potentials and bacteria number are not changed in sterile seawater. In addition, open-circuit-potentials and bacteria number for coppper clectrode were almost not changed no matter in natural or in sterile seawater. Moreover, the double capacitance of passive metals decreased woth time when immersed in natural seawater, while it remained almost unchanged in sterile seawater due to the decrease in dielectric constant with the formation of bilfilm in natural seawater. Above results strongly supported that bacteria attachment and growth of bilfilms were the cause for the ennoblement of open-circuit-potentials of the passive metal.
Key words:  microorganism      open-circuit-potential      electrochemistry      
Received:  28 April 2003     
ZTFLH:  TG172.5  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. The Effect of Microorganism Attachmenet on the Open-circuit-potential of Passive Metals in Seawater. J Chin Soc Corr Pro, 2004, 24(5): 262-266 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I5/262

[1]ClaudeE ,Zobell,etal.Thesignificanceofmarinebacteriainthefoulingofsubmergedsurface[J].J .Bacterial,1935,29:239-251
[2]ColwellRR .Microbialecologyofbiofouling.biotechnologyinthemarinesciences[M ].NewYork:JohnWileyandSonsInc.,1984:221-231
[3]DharHP ,HowellDW ,etal.Theuseofinsituelectrochemicalreductionofoxygeninthediminutionofadsorptionbacteriaonmetalsinseawater[J].J .Electrochem.Soc.,1982,129(10):2178-2182
[4]DharHP ,LewisDH ,etal.Theelectrochemicaldiminutionofsurfacebacterialconcentration[J].CAN .J.Microbiol,1981,27:998-1010
[5]TadshiMatsunaga,Tae-KyuLIM .Electrochemicalpreventionofbiofouling[J].Electrochemisty,2000,68(11):847-852
[6]BurdeLittle,etal.Microbiologicallyinfluencedcorrosion[A].NACEInternational5[C].Houston,Texas,1997:4-7
[7]YoungLY ,etal.Theroleofmicroorganismsinmarinefouling[J].InternationalBiodeterBull,1973,9:105-109
[8]CostertonJW ,etal.Microbialbiofilms[J].Annu.Rev.Microbial,1995,49:711-745
[9]XuK ,DexterSC ,LutherGW .Voltammetricmicroelectrodesforbiocorrosionstudies[J].Corrosion,1998,54(10):814-823
[10]MollicaA ,TrevisA .Correlationbetweentheformationofapri maryfilmandthemodificationofthecathodicsurfacesteelinsea water[A].Proc.4thInt.Cong.ManneCorrosionandFouling[C].Juan-Les-Prins.Antibes,1976,351
[11]DexterSC ,GaoGY .Effectofseawaterbiofilmsoncorrosionpo tentialandoxygenreductionofstainlesssteel[J].Corrosion,1988,44(10):717-723
[12]ScottoV ,LaiME .Theennoblementofstainlesssteelsinseawa ter:alikelyexplanationcomingfromthefield[J].Corros.Sci.,1998,40(6):1007-1018
[13]SalvagoG ,MagagninL .Biofilmeffectonthecathodicandanodicprocessesonstainlesssteelinseawaternearthecorrosionpoten tial:part1-corrosionpotential[J].Corrosion,2001,57(8):680-692
[14]JohnR ,BardalE .Cathodicpropertiesofdifferentstainlesssteelsinnaturalseawater[J].Corrosion,1985,41(5):296-302
[15]BelasMR ,etal.Adsorptionkineticsofpollarlyflagellatedvibrio[J].J .Bacteriol,1982,151(3):1568-1580
[16]LiHuirong,FuYubin,LiYun,etal.Compositionofmarinebacte riainmicro-biofilmformedonfourdifferentartificialsubstrata[J].JournalofOceanUniversityofQingdao,2001,31(3):32(李会荣,付玉滨,李筠等.海洋细菌在不同基质表面微生物粘膜中的组成[J].青岛海洋大学学报,2001,31(3):32
[17]JiWS ,XuB ,XuHS ,ColwellRR .Studiesonattachmentofma rinebacteriatobioticandabioticsurfaces[J].JournalofOceanU niversityofmarinebacteriatobioticandabioticsurfaces[J].Jour nalofOceanUniversityofQingdao,1991,21(2):61-68(纪伟尚,许兵,徐怀恕,R .R .Colwell.海洋细菌在生物和非生物表面附着的研究[J].青岛海洋大学学报,1991,21(2):61-68)
[18]ScottoV ,LaiME .Analyticalcharacterizationofnaturalmarinebiofilms[A].10 thInternat.CongressonMarineCorrosionandFouling[C].Melbourne,Australia,Feb.,1999
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[5] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[7] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[8] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[9] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[10] Fahe CAO, Xiaoyan LIU, Zejie ZHU, Zhenni YE, Pan LIU, Jianqing ZHANG. Mumeric Simulation and Gap Control of Scanning Electrochemical Microscopy and Its Application[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[11] Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[12] Xiaowei FENG,Wenjun QI,Xiaohui LI,Zhicheng LI. Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys[J]. 中国腐蚀与防护学报, 2016, 36(3): 267-272.
[13] Shinian LIU,Cheng WANG,Jilun DENG,Xi LI,Shenglong ZHU,Fuhui WANG. Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid[J]. 中国腐蚀与防护学报, 2015, 35(6): 510-518.
[14] Bo LI,Xuegang LUO,Yongjin TANG,Zifan LI,Sheng YANG,Yang JIAO. Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper[J]. 中国腐蚀与防护学报, 2015, 35(4): 345-352.
[15] WU Jun, WANG Xiujing, LUO Rui, ZHANG Sanping, ZHOU Jianlong. Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.
No Suggested Reading articles found!