Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (1): 16-19     DOI:
Research Report Current Issue | Archive | Adv Search |
Fractography of the Stress Corrosion Cracking Specimens of Type 304 Stainless Steel in High Temperature Water Containing Boric Acid and Lithium Ion
Hongmei Li;Wu Yang;Xun Cai;Zhanpeng Lv
Download:  PDF(276KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stress corrosion cracking (SCC) of 304 stainless steel in high temperature water media containing H3BO3 and Li+ was studied using slow stain rate test (SSRT). One group samples were annealed (heated at 1050℃ for 60 min. then water quenched) and the other group samples were sensitized (annealed sample then heated at 650℃ for 120 min. and water quenched). Temperature for SSRT is 300℃ or 250℃. Water Media contained 1200mg/L H3BO3, 2mg/L Li+, 2.5 mg/L or 5mg/L Cl- in order to simulate pressurized water reactor condition. The results proved that sensitized material, chloride concentration in the water and higher test temperature showed SCC susceptibility more severely for 304 stainless steel. The fractography proved susceptibility clearly.
Key words:  304 stainless steel      stress corrosion cracking      fractography      
Received:  12 January 2003     
ZTFLH:  TG111.9  

Cite this article: 

Hongmei Li; Wu Yang; Xun Cai; Zhanpeng Lv. Fractography of the Stress Corrosion Cracking Specimens of Type 304 Stainless Steel in High Temperature Water Containing Boric Acid and Lithium Ion. J Chin Soc Corr Pro, 2004, 24(1): 16-19 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I1/16

[1]YangWu,ZhangMeijie,ZhaoGuozhen,CongletonJohn.AcomparisonofU -bendandslowstrainrateproceduresforassessingtheSCCresistanceoftype304stainlesssteelinhigh-temperaturewater[J].Corrosion,1991,47(4):226-233
[2]YangWu,ZhaoGuozhen,ZhangMeijie,CongletonJohn.AnAESinvesti gationofthesurfacefilmsformedonstresscorrosiontestspecimensoftype304stainlesssteelinhightemperaturewater[J].Corros.Sci.,1992,33(1):89-102
[3]RutherWE ,SoppetWK ,KassnerTF .EffectoftemperatureandionicimpuritiesatverylowconcentrationsonstresscorrosioncrackingofAISI304stainlesssteel[J].Corrosion,1988,44(11):791-799
[4]MacDonaldDD ,SongH ,YoshidaK .Corrosionpotentialmeasurementsontype304SSandalloy182insimulatedBWRenvironments[J].Corro sion,1993,49(1):8-16
[5]CongletonJ ,BerrisfordRA ,YangWu.Stresscorrosioncrackingofsensi tizedtype304stainlesssteelindopedhigh-temperaturewater[J].Cor rosion,1995,51(12):901-910
[6]CuiYuexian,WangChangli.AnalysisofMetalFractureSection[M].Harbin:HarbinIndustryUniversityPublishingCompany,1998(崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998)
[7]HenryG ,HorstmanD .MacroscopeandMicroscopeFractography[M].Beijing:MechanicalIndustryPublishingCompany,1990(G .亨利,D .豪斯特曼.宏观断口及显微断口学[M].北京:机械工业出版社,1990)
[8]ZuoJingyi.StressCorrosionCrack[M].Xi′an:Xi′anJiaotongUniversityPublishingCompany,1985(左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1985)
[9]ChuWuyang,QiaoLijie,Chenqizhi.FractureandEnvironmentalFrac ture[M].Beijing:SciencePress,2000(褚武杨,乔利杰,陈奇志等.断裂与环境断裂[M].北京:科学出版社,2000)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[8] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[10] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[11] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[12] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[13] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[14] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[15] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
No Suggested Reading articles found!