Please wait a minute...
J Chin Soc Corr Pro  1999, Vol. 19 Issue (5): 285-290     DOI:
Research Report Current Issue | Archive | Adv Search |
CORROSION MECHANISM OF STEEL P110 IN CO2-CONTAINING SIMULATED OILFIELD BRINE
Jing Li;;;
北京科技大学 636#信箱
Download:  PDF(152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  EIS and other techniques were used to study the behavior of steel P110 in CO2-containing simulated oilfield brine at room temperature and pressure.It was found that the most important reason of H2CO3 being more corrosive than a xompletely dissociated acid resulted from an additional cathodic reaction:the direct reduction of H2CO3.The impedance spectra at both open circuit potential and anodic potential presented a typical character of three time constants:a capacitive semicircle was followed by an inductuve and a small capacitive demicircle at low frequencies.This and other obxervations suggested that the active dissloution of steel P110 at relatively lower pH in the simulated fluid took place by "pH-dependent mechanism".The cathodic reactions mainly included H+ reduction,direct H2CO3 reduction,HCO3 reduction and direct H2O reduction.The dominance of four reactions in cathodic current changed with pH of the media
Key words:  CO2 corrosion      corrosion mechanism      electrochemistry      anodic reaction      cathodic reaction      
Received:  29 October 1998     
Corresponding Authors:  Jing Li   

Cite this article: 

Jing Li. CORROSION MECHANISM OF STEEL P110 IN CO2-CONTAINING SIMULATED OILFIELD BRINE. J Chin Soc Corr Pro, 1999, 19(5): 285-290 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1999/V19/I5/285

1 Nesic S,PostlethwaiteJ,Olsen S.Corrosion ,1995 ,52 : 280 
2 Gray LGS,Anderson BG, Danysh MJ, Tremaine PG. Coorrosion/89 ,paper no. 464 , Hoston : NACE,1989
3 DeMaard C, Milliams DE.Corrosion ,1975,31 : 177 
4 Videm K.Proc.10th Europ.Corros.Cong.London:Institute of Metals,1993,vol. 1 ,p. 513 
5 曹楚南. 中国腐蚀与防护学报, 1993,13 (2) :91 
6 Lotz U,van Bodegom L,Ouwehand C.Corrosion/90,paper no. 41 
7 DeWaard C, Milliams DE.Corrosion,1975 ,31 (5) : 177 
8 Schmitt G.Corrosion/83 ,paper No. 43 
9 Wieckowski A,etal.Electrochim . Acta,1983 ,28 (11) : 1619 
10 Gray LGS,Anderson BG,Danysh MJ,Tremaine PPR.Corrosion/90 ,paper no.40 
11 Ogundele GI, White W E.Corrosion ,1986,42 (2) :71
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[8] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[12] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[14] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[15] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
No Suggested Reading articles found!