Please wait a minute...
J Chin Soc Corr Pro  1996, Vol. 16 Issue (3): 187-194    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF HYDROGEN AND STRESS ON ANODIC DISSOLUTION
HU Xiaoli;HUANG Zhenzhong;QIAO Lijie;CHU Wuyang (University of Science and Technology; Beijing)
Download:  PDF(642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of hydrogen and stress on anodic dissolution for mild steel in 1 mol/L NH4NO3 solution were investigated under various potentials corresponding to active, active-passive transition, passive and transpassive regions respectively on the polarization curve. The results showed that hydrogen decreased the dissolution rate in the active region but increased the rate in the passive and transpassive regions and increased the rate tremendously in the active-passive transition region. They were consistant with the effects of hydrogen on electrochemical impedance. Constant stress σ=1.1 σys increased the dissolution rate only by 2% in the active region but 30~70% in the active-passive transition region. The effects of hydrogen and stress on the dissolution rate were synergistic rather than simply additive and the effect in the transition region was far greater than that in the active region.
Key words:  Hydrogen      Stress      Anodic dissolution      Mild steel     
Received:  25 June 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

HU Xiaoli;HUANG Zhenzhong;QIAO Lijie;CHU Wuyang (University of Science and Technology; Beijing). EFFECT OF HYDROGEN AND STRESS ON ANODIC DISSOLUTION. J Chin Soc Corr Pro, 1996, 16(3): 187-194.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1996/V16/I3/187

1SaysAA,etal.Corrosion,1974,30:472HasegawaM,OsawaM.Corrosion,1980,36:67;1983,39:1153QiaoLJ,ChuWY,HsiaoCM..ScienceinChina,1992,35:5054QiaoLJIChuWY,HsiaoCM.Metall.Thans,1993,24A:9595褚武扬.氢损伤与滞后断裂,北京:冶金出版社,1988.376肖纪美.合金能量学,上海:上海科技出版社,1985.1747TsurnT.Mater.Sci.Engen.,1991,A146:18曹楚南.腐蚀电化学原理,北京:化工出版社,1985.p.1309BaoQS,ChuWY,HsiaoCM.ScriptaMetall.,1987,21:61310BockrisJOM,SubramanyanPK.ActaMetall.,1971,19:120511FellerHG,UhligHH.J.Electrochem.Soc.,1960,107:86412KeddamM,MattosOS,TakenoutiH.J.Electrochem.Soc.,1981,128:257
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[6] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[7] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[8] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[11] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[12] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[13] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[14] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[15] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
No Suggested Reading articles found!