|
|
High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines |
WANG Kun1,2, ZOU Lanxin1,2, GUO Lei1,2( ), YAN Kai3, YE Fuxing1,2, LIU Hongli4, GUO Hongbo5( ) |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China 3 China Special Equipment Inspection & Research Institute, Beijing 100029, China 4 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 5 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
Cite this article:
WANG Kun, ZOU Lanxin, GUO Lei, YAN Kai, YE Fuxing, LIU Hongli, GUO Hongbo. High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 1-19.
|
Abstract Thermal barrier coating (TBC) is a critical technology for hot sections of aeroengines and gas turbines. The development of TBC can significantly improve fuel efficiency and thrust-to-weight ratio of engines, allowing them to operate at higher temperatures. However, this has also led to increasingly serious high-temperature corrosion issues for TBC. High-temperature corrosion includes environmental deposition corrosion, namely CaO, MgO, Al2O3 and SiO2 (CMAS) induced corrosion, molten salt corrosion, and the coupling corrosion of CMAS and molten salts, which cause premature failure of TBC and pose a serious threat to the safe operation of aero-engines and gas turbines. This paper reviews the discovery process of these corrosion problems and their reaction mechanisms with TBC at high temperatures, and summarizes the current international research progress on the corrosion-resistant TBC from two aspects, i.e., new TBC materials development and novel coating microstructure design. By comprehensively sorting out the corrosion problems and protection methods of TBC at high temperatures, the paper provides a perspective on the research direction for developing long-lifetime and corrosion-resistant TBC.
|
Received: 29 July 2024
32134.14.1005.4537.2024.227
|
|
Fund: National Science and Technology Major Project(J2022-VI-0009-0040);National Natural Science Foundation of China(52272070) |
Corresponding Authors:
GUO Lei, E-mail: glei028@tju.edu.cn; GUO Hongbo, E-mail: guo.hongbo@buaa.edu.cn
|
1 |
Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mater. Rev., 2023, 37: 21040168
|
|
赵云松, 张 迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37: 21040168
|
2 |
Zhao J L, Yang L, Zhang C G, et al. Recent progress in thermal barrier coatings [J]. Adv. Ceram., 2020, 41: 148
|
|
赵娟利, 杨 岚, 张成冠 等. 热障涂层材料研究进展 [J]. 现代技术陶瓷, 2020, 41: 148
|
3 |
Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
|
4 |
Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating [J]. Surf. Coat. Technol., 2019, 370: 255
|
5 |
Lan Y L, Li J Q, Chen Q Z, et al. Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives [J]. J. Eur. Ceram. Soc., 2020, 40: 12
doi: 10.1016/j.jeurceramsoc.2019.09.013
|
6 |
Ustinov A I, Polishchuk S S, Demchenkov S A, et al. Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process [J]. Surf. Coat. Technol., 2020, 403: 126440
|
7 |
Li C Y, Guo H B, Gao L H, et al. Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition [J]. J. Therm. Spray. Technol., 2015, 24: 534
|
8 |
Guo L, He W T, Chen W B, et al. Progress on high-temperature protective coatings for aero-engines [J]. Surf. Sci. Technol., 2023, 1: 6
|
9 |
Miller R A. Current status of thermal barrier coatings-an overview [J]. Surf. Coat. Technol., 1987, 30: 1
|
10 |
Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9): 18
|
|
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9): 18
|
11 |
Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
|
|
李美姮, 孙晓峰, 张重远 等. EB-PVD热障涂层热循环过程中粘结层的氧化和相结构 [J]. 金属学报, 2002, 38: 79
|
12 |
Borom M P, Johnson C A, Peluso L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
|
13 |
Wei Z Y, Meng G H, Chen L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings [J]. J. Adv. Ceram., 2022, 11: 985
|
14 |
Ozgurluk Y, Doleker K M, Ozkan D, et al. Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts [J]. Coatings, 2019, 9: 166
|
15 |
Sidhu T S, Agrawal R D, Prakash S. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review [J]. Surf. Coat. Technol., 2005, 198: 441
|
16 |
Smialek J L. The chemistry of Saudi Arabian sand: a deposition problem on helicopter turbine airfoils [A]. Gordon Conference on Corrosion [C]. New London, NASA, 1991
|
17 |
Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas Turbines Power, 1993, 115: 641
|
18 |
Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
|
19 |
Wiesner V L, Bansal N P. Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass [J]. Surf. Coat. Technol., 2014, 259: 608
|
20 |
Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
|
21 |
Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
|
22 |
Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
|
23 |
Zhang B, Yu Y, Guo L, et al. Microstructure evolution of CMAS glass below melting temperature and its potential influence on thermal barrier coatings [J]. Ceram. Int., 2022, 48: 32877
|
24 |
Zhang X, Shan X, Withers P J, et al. Tracking the calcium-magnesium-alumino-silicate (CMAS) infiltration into an air-plasma spray thermal barrier coating using X-ray imaging [J]. Scr. Mater., 2020, 176: 94
|
25 |
Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
|
26 |
Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, 490A: 26
|
27 |
Xu G N, Yang L, Zhou Y C. A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings [J]. Corros. Sci., 2021, 190: 109690
|
28 |
Li Y Y, Yu Y, Guo L, et al. Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis [J]. Surf. Coat. Technol., 2022, 445: 128701
|
29 |
Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
|
30 |
Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
|
31 |
Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
|
32 |
Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
|
33 |
Wu H Q, Huo K, Ye F, et al. Wetting and spreading behavior of molten CMAS on the laser textured thermal barrier coatings with the assistance of Pt-modification [J]. Appl. Surf. Sci., 2023, 622: 156887
|
34 |
Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 662
|
35 |
Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
|
36 |
Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
|
37 |
Yang S J, Song W J, Dingwell D B, et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings [J]. Rare Met., 2022, 41: 469
|
38 |
Meng S J, Guo L, Guo H B, et al. CMAS-phobic and infiltration-inhibiting protective layer material for thermal barrier coatings [J]. J. Adv. Ceram., 2024, 13: 1254
|
39 |
Liu Y K, Fei Y J, Wang Z P, et al. Evaluation of mechanical properties of YSZ TBCs doped by different ratios of Eu3+ ions after isothermal oxidation [J]. Ceram. Int., 2022, 48: 18257
|
40 |
Fang H J, Wang W Z, Huang J B, et al. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: experiments and first-principles calculation [J]. Corros. Sci., 2021, 182: 109230
|
41 |
Cao Z, An S L, Song X W. Effect of thermal treatment at high temperature on phase stability and transformation of Yb2O3 and Y2O3 co-doped ZrO2 ceramics [J]. Sci. Rep., 2022, 12: 9955
|
42 |
Dong Y S, Jiang Z C, Li J, et al. Effect of Sc2O3 doping on YSZ TBCs: morphologies, phase composition, mechanical properties, and high-temperature oxidation resistance [J]. Surf. Coat. Technol., 2023, 475: 130134
|
43 |
Fan W, Wang Z Z, Bai Y, et al. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications [J]. J. Eur. Ceram. Soc., 2018, 38: 4502
|
44 |
Fan W, Bai Y, Liu Y F, et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack [J]. Ceram. Int., 2019, 45: 15763
doi: 10.1016/j.ceramint.2019.05.063
|
45 |
Su Q, Zhang Y Q, Li G F, et al. Doped effect of Gd and Y elements on corrosion resistance of ZrO2 in CMAS melt: first-principles and experimental study [J]. J. Eur. Ceram. Soc., 2021, 41: 7893
|
46 |
Wei X D, Zhao Z C, An Y L, et al. Effect of modulating the phase structure of YSZ ceramics by TiO2 doping on the CMAS corrosion resistance at 1250 oC [J]. Ceram. Int., 2023, 49: 14624
|
47 |
Kumar M, Dutta Majumdar J, Manna I. Development of Gd2O3 doped yttria stabilized zirconia based thermal barrier coating for improved high temperature oxidation and erosion resistance [J]. Ceram. Int., 2023, 49: 38081
|
48 |
Guo Y Q, He W T, Guo H B, et al. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2020, 46: 18888
|
49 |
Liu L, Dong H Y, Zhang P, et al. Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates [J]. J. Adv. Ceram., 2024, 13: 1132
|
50 |
Chen L, Feng J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics [J]. Adv. Ceram., 2019, 40: 367
|
|
陈 琳, 冯 晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热-力学性质研究进展 [J]. 现代技术陶瓷, 2019, 40: 367
|
51 |
Wang R, Dong T S, Wang H D, et al. CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth [J]. Ceram. Int., 2019, 45: 17409
doi: 10.1016/j.ceramint.2019.05.301
|
52 |
Yang L X. Study on high-temperature oxidation and CMAS corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [D]. Lanzhou: Lanzhou University of Technology, 2019
|
|
杨乐馨. LZO/8YSZ双陶瓷热障涂层高温氧化及CMAS腐蚀性能研究 [D]. 兰州: 兰州理工大学, 2019
|
53 |
Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
|
54 |
Sun S Y, Xue Z L, He W T, et al. Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J]. Ceram. Int., 2019, 45: 8138
|
55 |
Ozgurluk Y, Karaoglanli A C, Ahlatci H. Comparison of calcium-magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems [J]. Vacuum, 2021, 194: 110576
|
56 |
Wang B, Jiang C Y, Wu Y T, et al. Effect of microstructure on CMAS corrosion behavior of (Gd0.8Yb0.2)2Zr2O7/YSZ thermal barrier coatings prepared by EB-PVD [J]. Corros. Sci., 2023, 223: 111477
|
57 |
Liu Q, Hu X P, Zhu W, et al. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying [J]. Ceram. Int., 2022, 48: 24402
|
58 |
Tan Z Y, Yan G, Cao K, et al. Effect of microstructure on the performance of Zr6Ta2O17 ceramics as thermal barrier coatings [J]. Ceram. Int., 2023, 49: 29449
|
59 |
Dong H, Liang X H, Wang Z F, et al. Enhancing the performances of EB-PVD TBCs via overlayer Al-modification [J]. Surf. Coat. Technol., 2023, 473: 130001
|
60 |
Mohan P, Yao B, Patterson T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation [J]. Surf. Coat. Technol., 2009, 204: 797
|
61 |
Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
|
62 |
Guo L, Wang Y P, Liu M G, et al. CeO2 protective material against CMAS attack for thermal-environmental barrier coating applications [J]. Coatings, 2023, 13: 1119
|
63 |
Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
|
64 |
Guo L, Li Y Y, Li G. Design of Ti2AlC/YSZ TBCs for more efficient in resisting CMAS attack [J]. J. Adv. Ceram., 2023, 12: 1712
|
65 |
Guo L, Li G, Wu J, et al. Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC [J]. J. Adv. Ceram., 2022, 11: 945
|
66 |
Jing J, Li J M, He Z, et al. High-temperature CMAS resistance performance of Ti2AlC oxide scales [J]. Corros. Sci., 2020, 174: 108832
|
67 |
Guo L, Li G. Phase composition and fracture toughness of SiCw doped GdPO4 [J]. Adv. Ceram., 2020, 41: 186
|
|
郭 磊, 李 广. SiCw掺杂GdPO4的相组成和断裂韧性 [J]. 现代技术陶瓷, 2020, 41: 186
|
68 |
Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
|
69 |
Dong H Y, Liu L, Wang S K, et al. CMAS corrosion behavior of a LaPO4 ceramic prepared by spark plasma sintering [J]. J. Am. Ceram. Soc., 2023, 106: 5420
|
70 |
Guo L, Feng J Y, Liu M G, et al. Yb doping effects on CMAS corrosion resistance of Yb-doped GdPO4 by first-principles calculation and experimental investigation [J]. Corros. Sci., 2023, 218: 111175
|
71 |
Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
|
72 |
Lakiza S, Fabrichnaya O, Wang C, et al. Phase diagram of the ZrO2-Gd2O3-Al2O3 system [J]. J. Eur. Ceram. Soc., 2006, 26: 233
|
73 |
Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
|
74 |
Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
|
75 |
Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
|
76 |
Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J]. Acta Mater., 2012, 60: 5437
|
77 |
Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485
pmid: 26415623
|
78 |
Li H T, Luo X W, Huang S, et al. Potential thermal barrier coating material: High entropy ceramic (Ca0.5Sr0.5)(5RE)2O4 with enhanced thermophysical properties [J]. Ceram. Int., 2023, 49: 39627
|
79 |
Zhao Z F, Chen H, Xiang H M, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 [J]. J. Mater. Sci. Technol., 2019, 35: 2892
|
80 |
Zhu C Z, Wang H, Hu H S, et al. First principle study on high-entropy perovskites Ca(Ti0.25Zr0.25Hf0.25Sn0.25)O3 and Ca(Ti0.25Zr0.25-Hf0.25Ce0.25)O3 as thermal barrier coatings [J]. Mater. Chem. Phys., 2023, 297: 127460
|
81 |
Wang X Z, Guo L, Zhang H L, et al. Structural evolution and thermal conductivities of (Gd1- x Yb x )2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceram. Int., 2015, 41: 12621
|
82 |
Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
|
83 |
Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
|
84 |
Ye F X, Meng F W, Luo T Y, et al. The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS) [J]. J. Eur. Ceram. Soc., 2023, 43: 2185
|
85 |
Meng F W, Ye F X, Luo T Y. The high-temperature CMAS corrosion behavior of high-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Hf2O7 hafnate thermal barrier coating material with fluorite structure [J]. J. Eur. Ceram. Soc., 2024, 44: 2460
|
86 |
Lin G Q, Wang Y L, Yang L X, et al. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials [J]. Corros. Sci., 2023, 224: 111529
|
87 |
Arshad A, Yajid M A M, Idris M H. Microstructural characterization of modified plasma spray LZ/YSZ thermal barrier coating by laser glazing [J]. Mater. Today: Proc., 2021, 39: 941
|
88 |
Fan Z J, Wang R J, Mei X S, et al. Microstructure evolution in yttria stabilized zirconia during laser hybrid induction modification [J]. J. Alloy. Compd., 2019, 810: 151898
|
89 |
Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
|
90 |
Guo L, Gao Y, Cheng Y X, et al. Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion [J]. Corros. Sci., 2021, 192: 109847
|
91 |
Miller R A. Analysis of the response of a thermal barrier coating to sodium- and vanadium-doped combustion gases [A]. Proceedings of the 8th Midwest High Temperature Chemistry Conference [C]. Milwaukee: NASA, 1979
|
92 |
Hamilton J C, Nagelberg A S. In situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate [J]. J. Am. Ceram. Soc., 1984, 67: 686
|
93 |
Laxton J W, Stevens C G, Tidy D. Deposition and blade fouling of gas turbines by fuel impurities and additives [A]. Proceedings of the Conference Held in High Temperature Alloys for Gas Turbines 1982 [C]. Liège, Belgium: Springer Netherlands, 1982: 149
|
94 |
Jones R L. Some aspects of the hot corrosion of thermal barrier coatings [J]. J. Therm. Spray Technol., 1997, 6: 77
|
95 |
Habibi M H, Wang L, Liang J D, et al. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 oC [J]. Corros. Sci., 2013, 75: 409
|
96 |
Zhou C H, Zhang Z Y, Zhang Q M, et al. Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings [J]. Mater. Corros., 2014, 65: 613
|
97 |
Susnitzky D W, Hertl W, Carter C B. Destabilization of zirconia thermal barriers in the presence of V2O5 [J]. J. Am. Ceram. Soc., 1988, 71: 992
|
98 |
Habibi M H, Wang L, Guo S M. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 oC [J]. J. Eur. Ceram. Soc., 2012, 32: 1635
|
99 |
Susnitzky D W, Hertl W, Carter C B. Vanadia-induced transformations in yttria-stabilized zirconia [J]. Ultramicroscopy, 1989, 30(1-2): 233
|
100 |
Jin X C, Fu S G, Li P, et al. Microstructures evolution, corrosion and oxidation mechanisms of EB-PVD thermal barrier coatings exposed to molten salt corrosion [J]. J. Eur. Ceram. Soc., 2024, 44(8): 5115
|
101 |
Huang H, Liu C, Ni L Y, et al. Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy [J]. Corros. Sci., 2011, 53: 1369
|
102 |
Liu Z G, Ouyang J H, Zhou Y, et al. Densification, structure, and thermophysical properties of ytterbium-gadolinium zirconate ceramics [J]. Int. J. Appl. Ceram. Technol., 2009, 6: 485
|
103 |
Xu Q, Pan W, Wang J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2006, 89: 340
|
104 |
Wu Y, Bai Z M, Zheng L, et al. Hot corrosion behavior of NdYb-Zr2O7 exposed to V2O5 and Na2SO4+V2O5 molten salts [J]. Ceram. Int., 2020, 46: 8543
|
105 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating [J]. Surf. Coat. Technol., 2019, 360: 1
|
106 |
Yang P, Bu Z Y, An Y L, et al. Hot corrosion product and corrosion layer evolution of La2(Zr0.75Ce0.25)2O7 coating exposed to vanadate-sulfate salts at 1050 oC [J]. Ceram. Int., 2022, 48: 13014
|
107 |
Xu Z H, He L M, Mu R D, et al. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings [J]. Surf. Coat. Technol., 2010, 204: 3652
|
108 |
Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloy. Compd., 2017, 698: 13
|
109 |
Guo L, Zhang C L, He Q, et al. Corrosion products evolution and hot corrosion mechanisms of REPO4 (RE = Gd, Nd, La) in the presence of V2O5 + Na2SO4 molten salt [J]. J. Eur. Ceram. Soc., 2019, 39: 1496
|
110 |
Li M Z, Cheng Y X, Guo L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts [J]. Ceram. Int., 2017, 43: 7797
|
111 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. Phase stability of ZrO29.5Y2O35.6Yb2O35.2Gd2O3 compound at 1100 oC and 1300 oC for advanced TBC applications [J]. Ceram. Int., 2019, 45: 7344
doi: 10.1016/j.ceramint.2019.01.018
|
112 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. ZrO29.5Y2O35.6-Yb2O35.2Gd2O3; a promising TBC material with high resistance to hot corrosion [J]. J. Asian Ceram. Soc., 2020, 8: 898
doi: 10.1080/21870764.2020.1793474
|
113 |
Li Y, She Y J, Liao K. Hot-corrosion behavior of Gd2O3-Yb2O3 Co-doped YSZ thermal barrier coatings in the presence of V2O5 molten salt [J]. Coatings, 2023, 13: 886
|
114 |
Liu D C, Jing Y Z, Cui X F, et al. Phase evolution and hot corrosion behavior of Yb2O3 and CeO2 co-doping YSZ ceramics under high temperature [J]. Ceram. Int., 2023, 49: 34025
|
115 |
Stöver D, Pracht G, Lehmann H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings [J]. J. Therm. Spray Technol., 2004, 13: 76
|
116 |
Rahnavard M, Ostad Ahmad Ghorabi M J, Rafiee H. Comparison of hot corrosion behaviour of FGM and usual TBCs [J]. Surf. Eng., 2017, 33: 444
|
117 |
Sezavar A, Sajjadi S A, Babakhani A, et al. Hot corrosion behavior of micro- and nanostructured thermal barrier coatings: conventional bilayer and compositionally graded layer YSZ [J]. Oxid. Met., 2021, 96: 469
doi: 10.1007/s11085-021-10058-3
|
118 |
Vakilifard H, Ghasemi R, Rahimipour M. Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt [J]. Surf. Coat. Technol., 2017, 326: 238
|
119 |
Tsai P C, Lee J H, Hsu C S. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 [J]. Surf. Coat. Technol., 2007, 201: 5143
|
120 |
Batista C, Portinha A, Ribeiro R M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts [J]. Surf. Coat. Technol., 2006, 200: 6783
|
121 |
Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
|
122 |
Yang Z G, Liang W P, Miao Q, et al. Hot corrosion behaviors of as-sprayed and laser-remelted YSZ thermal barrier coatings at 950 oC [J]. Matéria, 2022, 27(3): e20220052
|
123 |
Afrasiabi A, Saremi M, Kobayashi A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3 [J]. Mater. Sci. Eng., 2008, 478A: 264
|
124 |
Soleimanipour Z, Baghshahi S, Shoja-Razavi R, et al. Hot corrosion behavior of Al2O3 laser clad plasma sprayed YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 17698
|
125 |
Vagge S T, Pahurkar Atul B, Ghogare S B. Synthesis and processing of thermal barrier coatings with the use of YSZ, LTA and LTA/YSZ [J]. Mater. Today: Proc., 2022, 48: 1680
|
126 |
Xie X Y, Guo H B, Gong S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings [J]. Chin. J. Aeronaut., 2012, 25: 137
|
127 |
Chen T, Sun J B, Song C X, et al. Hot corrosion behavior of Y3Al5O12/LaPO4 materials exposed to molten V2O5 [J]. Ceram. Int., 2022, 48: 14856
|
128 |
Soltani P, Keyvani A, Bahamirian M. Evolution of hot corrosion resistance of conventional CSZ and MoSi2 self-healing thermal barrier coatings in Na2SO4 + V2O5 at 950 oC [J]. Ceram. Int., 2022, 48: 9038
|
129 |
Xiang Y, Yan K, Yu H Y, et al. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2023, 49: 18678
|
130 |
Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo, Norway, 2018
|
131 |
Zhang X M, Yu Y, Sun J Y, et al. Crystallization behavior of CMAS and NaVO3 + CMAS mixture and its potential effect to thermal barrier coatings corrosion [J]. Ceram. Int., 2021, 47: 31868
|
132 |
Zhang X M, Xin H, Guo L. Crystallization behavior of calcium-magnesium-alumina-silicate coupled with NaCl/Na2SO4 [J]. Corros. Commun., 2023, 10: 1
|
133 |
Guo L, Zhang X M, Xin H. Corrosiveness of CMAS and CMAS+salt (NaVO3, Na2SO4 and NaCl) to YSZ thermal barrier coating materials [J]. Corros. Sci., 2022, 209: 110738
|
134 |
Li Y Y, Yu Y, Loghman Estarki M R, et al. Crystallization behavior of CMAS + sea salt mixture and its effect on the mixture penetration into thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 473: 130012
|
135 |
Guo L, Xin H, Hu C W. Comparison of NaVO3 + CMAS mixture and CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 177: 108968
|
136 |
Zhang Y G, Han J S, Wu D T, et al. Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings [J]. Corros. Sci., 2023, 221: 111369
|
137 |
Kumar R, Rommel S, Jiang C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures [J]. Surf. Coat. Technol., 2022, 423: 128039
|
138 |
Fang H J, Zhou P, Wang Y X, et al. Research on aggressiveness of CMAS + NaVO3 mixtures towards thermal barrier coatings from the perspective of physical and chemical characteristics [J]. Corros. Sci., 2023, 223: 111463
|
139 |
Guo L, Zhang X M, Liu M G, et al. CMAS + sea salt corrosion to thermal barrier coatings [J]. Corros. Sci., 2023, 218: 111172
|
140 |
Das S, Madheshiya A, Ghosh M, et al. Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses [J]. J. Phys. Chem. Solids, 2019, 126: 17
|
141 |
Guo L, Feng J Y, Meng S J. Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS + NaVO3 and CMAS [J]. Corros. Sci., 2022, 208: 110628
|
142 |
Li B W, Wu J, He X B, et al. Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack [J]. Ceram. Int., 2022, 48: 11662
|
143 |
Wu J, Gao Y, Guo C A, et al. Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings [J]. Ceram. Int., 2023, 49: 32282
|
144 |
Batista C, Portinha A, Ribeiro R M, et al. Surface laser-glazing of plasma-sprayed thermal barrier coatings [J]. Appl. Surf. Sci., 2005, 247: 313
|
145 |
Zhang Y G, Dou M F, Gao W, et al. Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings [J]. Corros. Sci., 2024, 232: 112048
|
146 |
Yan R X, Liang W P, Miao Q, et al. Corrosion mechanisms of high-entropy rare earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 exposed to CMAS and multi-medium (NaVO3 + CMAS) [J]. J. Eur. Ceram. Soc., 2024, 44: 3277
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|