Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 1-19    DOI: 10.11902/1005.4537.2024.227
Current Issue | Archive | Adv Search |
High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines
WANG Kun1,2, ZOU Lanxin1,2, GUO Lei1,2(), YAN Kai3, YE Fuxing1,2, LIU Hongli4, GUO Hongbo5()
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China
3 China Special Equipment Inspection & Research Institute, Beijing 100029, China
4 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
5 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article: 

WANG Kun, ZOU Lanxin, GUO Lei, YAN Kai, YE Fuxing, LIU Hongli, GUO Hongbo. High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 1-19.

Download:  HTML  PDF(19946KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coating (TBC) is a critical technology for hot sections of aeroengines and gas turbines. The development of TBC can significantly improve fuel efficiency and thrust-to-weight ratio of engines, allowing them to operate at higher temperatures. However, this has also led to increasingly serious high-temperature corrosion issues for TBC. High-temperature corrosion includes environmental deposition corrosion, namely CaO, MgO, Al2O3 and SiO2 (CMAS) induced corrosion, molten salt corrosion, and the coupling corrosion of CMAS and molten salts, which cause premature failure of TBC and pose a serious threat to the safe operation of aero-engines and gas turbines. This paper reviews the discovery process of these corrosion problems and their reaction mechanisms with TBC at high temperatures, and summarizes the current international research progress on the corrosion-resistant TBC from two aspects, i.e., new TBC materials development and novel coating microstructure design. By comprehensively sorting out the corrosion problems and protection methods of TBC at high temperatures, the paper provides a perspective on the research direction for developing long-lifetime and corrosion-resistant TBC.

Key words:  thermal barrier coating      CMAS corrosion      molten salt corrosion      coupling corrosion     
Received:  29 July 2024      32134.14.1005.4537.2024.227
ZTFLH:  TG174.4  
Fund: National Science and Technology Major Project(J2022-VI-0009-0040);National Natural Science Foundation of China(52272070)
Corresponding Authors:  GUO Lei, E-mail: glei028@tju.edu.cn;
GUO Hongbo, E-mail: guo.hongbo@buaa.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.227     OR     https://www.jcscp.org/EN/Y2025/V45/I1/1

Fig.1  Cross-sectional backscattered SEM images of the CMAS glass samples after treatment at 1150 oC for 0.5 h (a, b) and 1.5 h (c, d). In Fig.1c, the macro-morphology of the corresponding sample is also provided[23]
Fig.2  Cross-sectional microstructures of polished (a, b) and as-fabricated (c, d) YSZ bulks exposed to CMAS at 1250 oC for 1 h, EDS element mappings of the sample shown in Fig.2d (e)[36]
Fig.3  Cross-sectional morphology of Ti2AlC/YSZ coating attacked by CMAS at 1250 oC for 2 h (a), corresponding EDS mappings of Al, Ca, Ti and Si (b), and enlarged images (c, d) of the zones 1 and 2 marked in Fig.3a, respectively[64]
Fig.4  Surface (a) and cross-sectional (b) images of the coating with single laser-glazed layer, and fracture sections of the coatings with single laser-glazed layer (c) and double laser-glazed layers (d)[90]
Fig.5  Cross-sectional image of Gd2Zr2O7-LaPO4 coating after hot corrosion in molten V2O5 at 900 oC for 4 h (a), and enlarged image of the reaction layer (b)[108]
Fig.6  Macro morphologies (a, c, e) and cross-sectional SEM images (b, d, f) of YSZ pellets exposed to CMAS-V (a, b), CMAS-Cl (c, d) and CMAS-S (e, f) at 1200 oC for 0.5 h[133]
Fig.7  DSC curves of CMAS, CMAS + 5SS and CMAS +10SS powders[139]
Fig.8  Schematic illustrations of spreading and infiltration of CMAS and CMAS + SS melts on YSZ TBCs[139]
1 Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mater. Rev., 2023, 37: 21040168
赵云松, 张 迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37: 21040168
2 Zhao J L, Yang L, Zhang C G, et al. Recent progress in thermal barrier coatings [J]. Adv. Ceram., 2020, 41: 148
赵娟利, 杨 岚, 张成冠 等. 热障涂层材料研究进展 [J]. 现代技术陶瓷, 2020, 41: 148
3 Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
4 Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating [J]. Surf. Coat. Technol., 2019, 370: 255
5 Lan Y L, Li J Q, Chen Q Z, et al. Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives [J]. J. Eur. Ceram. Soc., 2020, 40: 12
doi: 10.1016/j.jeurceramsoc.2019.09.013
6 Ustinov A I, Polishchuk S S, Demchenkov S A, et al. Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process [J]. Surf. Coat. Technol., 2020, 403: 126440
7 Li C Y, Guo H B, Gao L H, et al. Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition [J]. J. Therm. Spray. Technol., 2015, 24: 534
8 Guo L, He W T, Chen W B, et al. Progress on high-temperature protective coatings for aero-engines [J]. Surf. Sci. Technol., 2023, 1: 6
9 Miller R A. Current status of thermal barrier coatings-an overview [J]. Surf. Coat. Technol., 1987, 30: 1
10 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9): 18
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9): 18
11 Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
李美姮, 孙晓峰, 张重远 等. EB-PVD热障涂层热循环过程中粘结层的氧化和相结构 [J]. 金属学报, 2002, 38: 79
12 Borom M P, Johnson C A, Peluso L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
13 Wei Z Y, Meng G H, Chen L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings [J]. J. Adv. Ceram., 2022, 11: 985
14 Ozgurluk Y, Doleker K M, Ozkan D, et al. Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts [J]. Coatings, 2019, 9: 166
15 Sidhu T S, Agrawal R D, Prakash S. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review [J]. Surf. Coat. Technol., 2005, 198: 441
16 Smialek J L. The chemistry of Saudi Arabian sand: a deposition problem on helicopter turbine airfoils [A]. Gordon Conference on Corrosion [C]. New London, NASA, 1991
17 Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas Turbines Power, 1993, 115: 641
18 Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
19 Wiesner V L, Bansal N P. Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass [J]. Surf. Coat. Technol., 2014, 259: 608
20 Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
21 Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
22 Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
23 Zhang B, Yu Y, Guo L, et al. Microstructure evolution of CMAS glass below melting temperature and its potential influence on thermal barrier coatings [J]. Ceram. Int., 2022, 48: 32877
24 Zhang X, Shan X, Withers P J, et al. Tracking the calcium-magnesium-alumino-silicate (CMAS) infiltration into an air-plasma spray thermal barrier coating using X-ray imaging [J]. Scr. Mater., 2020, 176: 94
25 Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
26 Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, 490A: 26
27 Xu G N, Yang L, Zhou Y C. A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings [J]. Corros. Sci., 2021, 190: 109690
28 Li Y Y, Yu Y, Guo L, et al. Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis [J]. Surf. Coat. Technol., 2022, 445: 128701
29 Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
30 Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
31 Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
32 Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
33 Wu H Q, Huo K, Ye F, et al. Wetting and spreading behavior of molten CMAS on the laser textured thermal barrier coatings with the assistance of Pt-modification [J]. Appl. Surf. Sci., 2023, 622: 156887
34 Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 662
35 Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
36 Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
37 Yang S J, Song W J, Dingwell D B, et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings [J]. Rare Met., 2022, 41: 469
38 Meng S J, Guo L, Guo H B, et al. CMAS-phobic and infiltration-inhibiting protective layer material for thermal barrier coatings [J]. J. Adv. Ceram., 2024, 13: 1254
39 Liu Y K, Fei Y J, Wang Z P, et al. Evaluation of mechanical properties of YSZ TBCs doped by different ratios of Eu3+ ions after isothermal oxidation [J]. Ceram. Int., 2022, 48: 18257
40 Fang H J, Wang W Z, Huang J B, et al. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: experiments and first-principles calculation [J]. Corros. Sci., 2021, 182: 109230
41 Cao Z, An S L, Song X W. Effect of thermal treatment at high temperature on phase stability and transformation of Yb2O3 and Y2O3 co-doped ZrO2 ceramics [J]. Sci. Rep., 2022, 12: 9955
42 Dong Y S, Jiang Z C, Li J, et al. Effect of Sc2O3 doping on YSZ TBCs: morphologies, phase composition, mechanical properties, and high-temperature oxidation resistance [J]. Surf. Coat. Technol., 2023, 475: 130134
43 Fan W, Wang Z Z, Bai Y, et al. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications [J]. J. Eur. Ceram. Soc., 2018, 38: 4502
44 Fan W, Bai Y, Liu Y F, et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack [J]. Ceram. Int., 2019, 45: 15763
doi: 10.1016/j.ceramint.2019.05.063
45 Su Q, Zhang Y Q, Li G F, et al. Doped effect of Gd and Y elements on corrosion resistance of ZrO2 in CMAS melt: first-principles and experimental study [J]. J. Eur. Ceram. Soc., 2021, 41: 7893
46 Wei X D, Zhao Z C, An Y L, et al. Effect of modulating the phase structure of YSZ ceramics by TiO2 doping on the CMAS corrosion resistance at 1250 oC [J]. Ceram. Int., 2023, 49: 14624
47 Kumar M, Dutta Majumdar J, Manna I. Development of Gd2O3 doped yttria stabilized zirconia based thermal barrier coating for improved high temperature oxidation and erosion resistance [J]. Ceram. Int., 2023, 49: 38081
48 Guo Y Q, He W T, Guo H B, et al. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2020, 46: 18888
49 Liu L, Dong H Y, Zhang P, et al. Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates [J]. J. Adv. Ceram., 2024, 13: 1132
50 Chen L, Feng J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics [J]. Adv. Ceram., 2019, 40: 367
陈 琳, 冯 晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热-力学性质研究进展 [J]. 现代技术陶瓷, 2019, 40: 367
51 Wang R, Dong T S, Wang H D, et al. CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth [J]. Ceram. Int., 2019, 45: 17409
doi: 10.1016/j.ceramint.2019.05.301
52 Yang L X. Study on high-temperature oxidation and CMAS corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [D]. Lanzhou: Lanzhou University of Technology, 2019
杨乐馨. LZO/8YSZ双陶瓷热障涂层高温氧化及CMAS腐蚀性能研究 [D]. 兰州: 兰州理工大学, 2019
53 Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
54 Sun S Y, Xue Z L, He W T, et al. Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J]. Ceram. Int., 2019, 45: 8138
55 Ozgurluk Y, Karaoglanli A C, Ahlatci H. Comparison of calcium-magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems [J]. Vacuum, 2021, 194: 110576
56 Wang B, Jiang C Y, Wu Y T, et al. Effect of microstructure on CMAS corrosion behavior of (Gd0.8Yb0.2)2Zr2O7/YSZ thermal barrier coatings prepared by EB-PVD [J]. Corros. Sci., 2023, 223: 111477
57 Liu Q, Hu X P, Zhu W, et al. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying [J]. Ceram. Int., 2022, 48: 24402
58 Tan Z Y, Yan G, Cao K, et al. Effect of microstructure on the performance of Zr6Ta2O17 ceramics as thermal barrier coatings [J]. Ceram. Int., 2023, 49: 29449
59 Dong H, Liang X H, Wang Z F, et al. Enhancing the performances of EB-PVD TBCs via overlayer Al-modification [J]. Surf. Coat. Technol., 2023, 473: 130001
60 Mohan P, Yao B, Patterson T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation [J]. Surf. Coat. Technol., 2009, 204: 797
61 Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
62 Guo L, Wang Y P, Liu M G, et al. CeO2 protective material against CMAS attack for thermal-environmental barrier coating applications [J]. Coatings, 2023, 13: 1119
63 Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
64 Guo L, Li Y Y, Li G. Design of Ti2AlC/YSZ TBCs for more efficient in resisting CMAS attack [J]. J. Adv. Ceram., 2023, 12: 1712
65 Guo L, Li G, Wu J, et al. Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC [J]. J. Adv. Ceram., 2022, 11: 945
66 Jing J, Li J M, He Z, et al. High-temperature CMAS resistance performance of Ti2AlC oxide scales [J]. Corros. Sci., 2020, 174: 108832
67 Guo L, Li G. Phase composition and fracture toughness of SiCw doped GdPO4 [J]. Adv. Ceram., 2020, 41: 186
郭 磊, 李 广. SiCw掺杂GdPO4的相组成和断裂韧性 [J]. 现代技术陶瓷, 2020, 41: 186
68 Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
69 Dong H Y, Liu L, Wang S K, et al. CMAS corrosion behavior of a LaPO4 ceramic prepared by spark plasma sintering [J]. J. Am. Ceram. Soc., 2023, 106: 5420
70 Guo L, Feng J Y, Liu M G, et al. Yb doping effects on CMAS corrosion resistance of Yb-doped GdPO4 by first-principles calculation and experimental investigation [J]. Corros. Sci., 2023, 218: 111175
71 Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
72 Lakiza S, Fabrichnaya O, Wang C, et al. Phase diagram of the ZrO2-Gd2O3-Al2O3 system [J]. J. Eur. Ceram. Soc., 2006, 26: 233
73 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
74 Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
75 Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
76 Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J]. Acta Mater., 2012, 60: 5437
77 Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485 pmid: 26415623
78 Li H T, Luo X W, Huang S, et al. Potential thermal barrier coating material: High entropy ceramic (Ca0.5Sr0.5)(5RE)2O4 with enhanced thermophysical properties [J]. Ceram. Int., 2023, 49: 39627
79 Zhao Z F, Chen H, Xiang H M, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 [J]. J. Mater. Sci. Technol., 2019, 35: 2892
80 Zhu C Z, Wang H, Hu H S, et al. First principle study on high-entropy perovskites Ca(Ti0.25Zr0.25Hf0.25Sn0.25)O3 and Ca(Ti0.25Zr0.25-Hf0.25Ce0.25)O3 as thermal barrier coatings [J]. Mater. Chem. Phys., 2023, 297: 127460
81 Wang X Z, Guo L, Zhang H L, et al. Structural evolution and thermal conductivities of (Gd1- x Yb x )2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceram. Int., 2015, 41: 12621
82 Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
83 Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
84 Ye F X, Meng F W, Luo T Y, et al. The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS) [J]. J. Eur. Ceram. Soc., 2023, 43: 2185
85 Meng F W, Ye F X, Luo T Y. The high-temperature CMAS corrosion behavior of high-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Hf2O7 hafnate thermal barrier coating material with fluorite structure [J]. J. Eur. Ceram. Soc., 2024, 44: 2460
86 Lin G Q, Wang Y L, Yang L X, et al. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials [J]. Corros. Sci., 2023, 224: 111529
87 Arshad A, Yajid M A M, Idris M H. Microstructural characterization of modified plasma spray LZ/YSZ thermal barrier coating by laser glazing [J]. Mater. Today: Proc., 2021, 39: 941
88 Fan Z J, Wang R J, Mei X S, et al. Microstructure evolution in yttria stabilized zirconia during laser hybrid induction modification [J]. J. Alloy. Compd., 2019, 810: 151898
89 Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
90 Guo L, Gao Y, Cheng Y X, et al. Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion [J]. Corros. Sci., 2021, 192: 109847
91 Miller R A. Analysis of the response of a thermal barrier coating to sodium- and vanadium-doped combustion gases [A]. Proceedings of the 8th Midwest High Temperature Chemistry Conference [C]. Milwaukee: NASA, 1979
92 Hamilton J C, Nagelberg A S. In situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate [J]. J. Am. Ceram. Soc., 1984, 67: 686
93 Laxton J W, Stevens C G, Tidy D. Deposition and blade fouling of gas turbines by fuel impurities and additives [A]. Proceedings of the Conference Held in High Temperature Alloys for Gas Turbines 1982 [C]. Liège, Belgium: Springer Netherlands, 1982: 149
94 Jones R L. Some aspects of the hot corrosion of thermal barrier coatings [J]. J. Therm. Spray Technol., 1997, 6: 77
95 Habibi M H, Wang L, Liang J D, et al. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 oC [J]. Corros. Sci., 2013, 75: 409
96 Zhou C H, Zhang Z Y, Zhang Q M, et al. Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings [J]. Mater. Corros., 2014, 65: 613
97 Susnitzky D W, Hertl W, Carter C B. Destabilization of zirconia thermal barriers in the presence of V2O5 [J]. J. Am. Ceram. Soc., 1988, 71: 992
98 Habibi M H, Wang L, Guo S M. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 oC [J]. J. Eur. Ceram. Soc., 2012, 32: 1635
99 Susnitzky D W, Hertl W, Carter C B. Vanadia-induced transformations in yttria-stabilized zirconia [J]. Ultramicroscopy, 1989, 30(1-2): 233
100 Jin X C, Fu S G, Li P, et al. Microstructures evolution, corrosion and oxidation mechanisms of EB-PVD thermal barrier coatings exposed to molten salt corrosion [J]. J. Eur. Ceram. Soc., 2024, 44(8): 5115
101 Huang H, Liu C, Ni L Y, et al. Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy [J]. Corros. Sci., 2011, 53: 1369
102 Liu Z G, Ouyang J H, Zhou Y, et al. Densification, structure, and thermophysical properties of ytterbium-gadolinium zirconate ceramics [J]. Int. J. Appl. Ceram. Technol., 2009, 6: 485
103 Xu Q, Pan W, Wang J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2006, 89: 340
104 Wu Y, Bai Z M, Zheng L, et al. Hot corrosion behavior of NdYb-Zr2O7 exposed to V2O5 and Na2SO4+V2O5 molten salts [J]. Ceram. Int., 2020, 46: 8543
105 Bahamirian M, Hadavi S M M, Farvizi M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating [J]. Surf. Coat. Technol., 2019, 360: 1
106 Yang P, Bu Z Y, An Y L, et al. Hot corrosion product and corrosion layer evolution of La2(Zr0.75Ce0.25)2O7 coating exposed to vanadate-sulfate salts at 1050 oC [J]. Ceram. Int., 2022, 48: 13014
107 Xu Z H, He L M, Mu R D, et al. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings [J]. Surf. Coat. Technol., 2010, 204: 3652
108 Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloy. Compd., 2017, 698: 13
109 Guo L, Zhang C L, He Q, et al. Corrosion products evolution and hot corrosion mechanisms of REPO4 (RE = Gd, Nd, La) in the presence of V2O5 + Na2SO4 molten salt [J]. J. Eur. Ceram. Soc., 2019, 39: 1496
110 Li M Z, Cheng Y X, Guo L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts [J]. Ceram. Int., 2017, 43: 7797
111 Bahamirian M, Hadavi S M M, Farvizi M, et al. Phase stability of ZrO29.5Y2O35.6Yb2O35.2Gd2O3 compound at 1100  oC and 1300 oC for advanced TBC applications [J]. Ceram. Int., 2019, 45: 7344
doi: 10.1016/j.ceramint.2019.01.018
112 Bahamirian M, Hadavi S M M, Farvizi M, et al. ZrO29.5Y2O35.6-Yb2O35.2Gd2O3; a promising TBC material with high resistance to hot corrosion [J]. J. Asian Ceram. Soc., 2020, 8: 898
doi: 10.1080/21870764.2020.1793474
113 Li Y, She Y J, Liao K. Hot-corrosion behavior of Gd2O3-Yb2O3 Co-doped YSZ thermal barrier coatings in the presence of V2O5 molten salt [J]. Coatings, 2023, 13: 886
114 Liu D C, Jing Y Z, Cui X F, et al. Phase evolution and hot corrosion behavior of Yb2O3 and CeO2 co-doping YSZ ceramics under high temperature [J]. Ceram. Int., 2023, 49: 34025
115 Stöver D, Pracht G, Lehmann H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings [J]. J. Therm. Spray Technol., 2004, 13: 76
116 Rahnavard M, Ostad Ahmad Ghorabi M J, Rafiee H. Comparison of hot corrosion behaviour of FGM and usual TBCs [J]. Surf. Eng., 2017, 33: 444
117 Sezavar A, Sajjadi S A, Babakhani A, et al. Hot corrosion behavior of micro- and nanostructured thermal barrier coatings: conventional bilayer and compositionally graded layer YSZ [J]. Oxid. Met., 2021, 96: 469
doi: 10.1007/s11085-021-10058-3
118 Vakilifard H, Ghasemi R, Rahimipour M. Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt [J]. Surf. Coat. Technol., 2017, 326: 238
119 Tsai P C, Lee J H, Hsu C S. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 [J]. Surf. Coat. Technol., 2007, 201: 5143
120 Batista C, Portinha A, Ribeiro R M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts [J]. Surf. Coat. Technol., 2006, 200: 6783
121 Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
122 Yang Z G, Liang W P, Miao Q, et al. Hot corrosion behaviors of as-sprayed and laser-remelted YSZ thermal barrier coatings at 950 oC [J]. Matéria, 2022, 27(3): e20220052
123 Afrasiabi A, Saremi M, Kobayashi A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3 [J]. Mater. Sci. Eng., 2008, 478A: 264
124 Soleimanipour Z, Baghshahi S, Shoja-Razavi R, et al. Hot corrosion behavior of Al2O3 laser clad plasma sprayed YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 17698
125 Vagge S T, Pahurkar Atul B, Ghogare S B. Synthesis and processing of thermal barrier coatings with the use of YSZ, LTA and LTA/YSZ [J]. Mater. Today: Proc., 2022, 48: 1680
126 Xie X Y, Guo H B, Gong S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings [J]. Chin. J. Aeronaut., 2012, 25: 137
127 Chen T, Sun J B, Song C X, et al. Hot corrosion behavior of Y3Al5O12/LaPO4 materials exposed to molten V2O5 [J]. Ceram. Int., 2022, 48: 14856
128 Soltani P, Keyvani A, Bahamirian M. Evolution of hot corrosion resistance of conventional CSZ and MoSi2 self-healing thermal barrier coatings in Na2SO4 + V2O5 at 950 oC [J]. Ceram. Int., 2022, 48: 9038
129 Xiang Y, Yan K, Yu H Y, et al. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2023, 49: 18678
130 Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo, Norway, 2018
131 Zhang X M, Yu Y, Sun J Y, et al. Crystallization behavior of CMAS and NaVO3 + CMAS mixture and its potential effect to thermal barrier coatings corrosion [J]. Ceram. Int., 2021, 47: 31868
132 Zhang X M, Xin H, Guo L. Crystallization behavior of calcium-magnesium-alumina-silicate coupled with NaCl/Na2SO4 [J]. Corros. Commun., 2023, 10: 1
133 Guo L, Zhang X M, Xin H. Corrosiveness of CMAS and CMAS+salt (NaVO3, Na2SO4 and NaCl) to YSZ thermal barrier coating materials [J]. Corros. Sci., 2022, 209: 110738
134 Li Y Y, Yu Y, Loghman Estarki M R, et al. Crystallization behavior of CMAS + sea salt mixture and its effect on the mixture penetration into thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 473: 130012
135 Guo L, Xin H, Hu C W. Comparison of NaVO3 + CMAS mixture and CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 177: 108968
136 Zhang Y G, Han J S, Wu D T, et al. Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings [J]. Corros. Sci., 2023, 221: 111369
137 Kumar R, Rommel S, Jiang C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures [J]. Surf. Coat. Technol., 2022, 423: 128039
138 Fang H J, Zhou P, Wang Y X, et al. Research on aggressiveness of CMAS + NaVO3 mixtures towards thermal barrier coatings from the perspective of physical and chemical characteristics [J]. Corros. Sci., 2023, 223: 111463
139 Guo L, Zhang X M, Liu M G, et al. CMAS + sea salt corrosion to thermal barrier coatings [J]. Corros. Sci., 2023, 218: 111172
140 Das S, Madheshiya A, Ghosh M, et al. Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses [J]. J. Phys. Chem. Solids, 2019, 126: 17
141 Guo L, Feng J Y, Meng S J. Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS + NaVO3 and CMAS [J]. Corros. Sci., 2022, 208: 110628
142 Li B W, Wu J, He X B, et al. Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack [J]. Ceram. Int., 2022, 48: 11662
143 Wu J, Gao Y, Guo C A, et al. Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings [J]. Ceram. Int., 2023, 49: 32282
144 Batista C, Portinha A, Ribeiro R M, et al. Surface laser-glazing of plasma-sprayed thermal barrier coatings [J]. Appl. Surf. Sci., 2005, 247: 313
145 Zhang Y G, Dou M F, Gao W, et al. Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings [J]. Corros. Sci., 2024, 232: 112048
146 Yan R X, Liang W P, Miao Q, et al. Corrosion mechanisms of high-entropy rare earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 exposed to CMAS and multi-medium (NaVO3 + CMAS) [J]. J. Eur. Ceram. Soc., 2024, 44: 3277
[1] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[2] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[3] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[4] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[5] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[6] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[7] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[8] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[9] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[10] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[11] Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[12] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[13] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[14] LI yunduan; Shengkai Gong; Huibing Xv. FAILURE MECHANISM OF ONE SIDE COATED THERMAL BARRIER COATING[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[15] Changguang Deng; Ziqi Kuang. THE EFFECT OF LANTHANUM BEARING FERROSILICON TOTHE MICROSTRUCTURE AND PERFORMANCES OF TBCs GRADED COATING[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
No Suggested Reading articles found!