Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1255-1262    DOI: 10.11902/1005.4537.2023.337
Current Issue | Archive | Adv Search |
Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel
HAN Yulong1,2, LI Jian3, GUO Liya1,2(), YANG Bianjiang2, LU Hengchang1,2, WEI Xicheng1,2, DONG Han1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China
3 Shaanxi Steel Group lndustrial Innovation Research Institute Co., Ltd., Hanzhong 723000, China
Cite this article: 

HAN Yulong, LI Jian, GUO Liya, YANG Bianjiang, LU Hengchang, WEI Xicheng, DONG Han. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1255-1262.

Download:  HTML  PDF(20112KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of MnS inclusions with different sizes on the corrosion behavior of HRB400E rebar steel in 2%NaCl solution was investigated by means of automatic inclusion analyzer, immersion tests and Electron Backscattered Diffraction. The in-situ immersion test results showed that the localized corrosion was more easily induced by the relatively larger MnS inclusions than the smaller ones. The EBSD results suggested that corrosion was more likely initiated by inclusions with size above 40 μm2, and this may be related to the presence of more low-angle grain boundaries and higher dislocation densities around them. Meanwhile, compared with the pit induced by a single inclusion, the width of pits initiated by clusters of large-size inclusions were greater.

Key words:  MnS      size      rebars      localized corrosion     
Received:  24 October 2023      32134.14.1005.4537.2023.337
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(42276214, 52201078);Shanghai Sailing Program(21YF1412800)
Corresponding Authors:  GUO Liya, E-mail: liya_guo@shu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.337     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1255

Fig.1  OM image of inclusions (a) and the size distribution of MnS inclusions in the sample (b)
Fig.2  SEM-EDS images of the MnS with (0-5 μm2 (a), 5-10 μm2 (b), 10-20 μm2 (c) and 20-40 μm2 (d)) inclusions in HRB400E steel unimmered (a1-d1) and immersed (a2-d2) for 60 min
Fig.3  SEM-EDS images of the MnS (~60.5 μm2) inclusions in HRB400E steel unimmersed (a) and immersed for 15 min (b), 30 min (c) and 60 min (d)
Fig.4  SEM images (a, b) and 3D profilometer images (c) of the clustered (a, b, c1) and single (a, b, c2) inclusions not immersed (a1) and immersed for 15 min (a2), 30 min (b1) and 60 min (b2)
Fig.5  Kernel average misorientation (a1-c1) and grain boundaries (a2-c2) of different size of MnS inclusions
Fig.6  Schematic diagrams of corrosion mechanism of MnS inclusions with a size of less than (a, b) and larger than (c-f) 40 μm2 in chloride environment
1 Bouzaffour K, Lescop B, Talbot P, et al. Development of an embedded UHF-RFID corrosion sensor for monitoring corrosion of steel in concrete [J]. IEEE Sens. J., 2021, 21: 12306
2 Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
3 Liu C, Li C, Che Z C, et al. Influence of cementite coarsening on the corrosion resistance of high strength low alloy steel [J]. npj Mater. Degrad., 2023, 7: 43
4 Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
5 Liu C C, Zhang L F, Ren Y, et al. Review on effect of non-metallic inclusions on pitting corrosion resistance of stainless steel [J]. J. Iron Ste. Res., 2021, 33: 1040
刘城城, 张立峰, 任 英 等. 非金属夹杂物对不锈钢耐点蚀性能影响的综述 [J]. 钢铁研究学报, 2021, 33: 1040
doi: 10.13228/j.boyuan.issn1001-0963.20210078
6 Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
7 Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
8 Liu Q, Yang S F, Zhao M J, et al. Pitting corrosion of steel induced by Al2O3 inclusions [J]. Metals, 2017, 7: 347
9 Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels [J]. Appl. Surf. Sci., 2019, 475: 83
doi: 10.1016/j.apsusc.2018.12.243
10 Liu Y Q, Wang L J, Chou K. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway [J]. J. Rare Earths, 2014, 32: 759
11 Li W, Li J Y, Gu J B, et al. Correlation between hyperfine structure of inclusion and localized corrosion mechanism of DSS2101 with Ce microalloying in simulated marine environment [J]. Vacuum, 2021, 191: 110361
12 Han Y L, Hao L, Wang J Q, et al. Effect of rare earth addition on corrosion sensitivity of GCr15 bearing steel in marine environment [J]. Mater. Lett., 2023, 333: 133693
13 Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
14 Nan H. Effect of TiN inclusion on pitting of an ultra-pure ferritic stainless steel [J]. Corros. Prot., 2021, 42(9): 22
南 海. TiN夹杂物对超纯铁素体不锈钢点蚀的影响 [J]. 腐蚀与防护, 2021, 42(9): 22
15 Zhang X W, Zhao S L, Wang Z, et al. The pitting to uniform corrosion evolution process promoted by large inclusions in mooring chain steels [J]. Mater. Charact., 2021, 181: 111456
16 Zhang Y H, Liu J, Huang F, et al. Effect of composition and size of oxide inclusions on pitting initiation of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 105
张耀华, 刘 静, 黄 峰 等. 2205双相不锈钢中氧化物夹杂的成分和尺寸对点蚀萌生的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 105
doi: 10.11903/1002.6495.2018.011
17 Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
18 Yang S F, Zhao M J, Feng J, et al. Induced-pitting behaviors of MnS inclusions in steel [J]. High Temp. Mater. Process., 2018, 37: 1007
19 Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes [J]. JOM, 2018, 70: 2513
20 Song D, Sun W, Jiang J Y, et al. Corrosion behavior of Cr micro-alloyed corrosion-resistant rebar in neutral Cl- -containing environment [J]. J. Iron Steel Res. Int., 2016, 23: 608
21 Peng Y Z, Gong F Y, Zhao Y X. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究 [J]. 中国腐蚀与防护学报, 2022, 42: 813
doi: 10.11902/1005.4537.2021.265
22 Hu J Z, Cheng X Q, Li X G, et al. The coupled effect of temperature and carbonation on the corrosion of Rebars in the simulated concrete pore solutions [J]. J. Chem., 2015, 2015: 462605
23 Liu T, Li N N, Liu C, et al. Attempt to optimize the corrosion resistance of HRB400 steel rebar with Cr and RE [J]. Materials, 2022, 15: 8269
24 Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93: 232
doi: 10.1016/j.jmst.2021.03.014
25 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
26 Jiang B, Wang C, Song R G, et al. Effect of creep ageing on the corrosion behaviour of an Al-Cu-Li alloy [J]. Corros. Sci., 2022, 202: 110314
27 Shen K L, Jiang W C, Sun C, et al. Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel: Effect of plastic pre-strain [J]. Corros. Sci., 2023, 210: 110847
28 Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389A: 176
29 Qin X X, Gu Y J, Zhang L C, et al. Continuum model and numerical method for dislocation structure and energy of grain boundaries [J]. Multiscale Model. Simul., 2022, 20: 323
30 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
31 Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media [J]. Corros. Sci., 2013, 76: 267
32 Brossia C S, Kelly R G. Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss [J]. Corros. Sci., 1998, 40: 1851
33 Wei W Z, Wu KM, Liu J, et al. Initiation and propagation of localized corrosion induced by (Zr, Ti, Al)-O x inclusions in low-alloy steels in marine environment [J]. J. Iron Steel Res. Int., 2021, 28: 453
34 Wan Y, Gao S, Zhang X J, et al. Effect of manganese sulfide inclusion morphology on the corrosion resistance and pitting corrosion behavior of free-cutting austenitic stainless steel [J]. J. Mater. Eng. Perform., 2024, 33: 336
[1] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[3] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[4] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[5] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[6] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[7] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[8] DONG Zhiyong, XU Xuyi, LI Yuhang. Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow[J]. 中国腐蚀与防护学报, 2023, 43(1): 166-172.
[9] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[10] SONG Xianzhi, ZHU Zhiping, ZHOU Pan, HE Mingpeng, JIANG Yuankang, WANG Zhenggang. Effect of Polyacrylic Acid on Dispersion Characteristics of Corrosion Product Fe3O4 in Water of Power Plant and Its Mechanism[J]. 中国腐蚀与防护学报, 2022, 42(3): 479-485.
[11] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[12] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[13] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[14] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[15] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
No Suggested Reading articles found!