Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 372-380    DOI: 10.11902/1005.4537.2023.114
Current Issue | Archive | Adv Search |
Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel
YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 372-380.

Download:  HTML  PDF(7919KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiO2 nanotube arrays are decorated with CdS and Bi2S3 by an ultrasonic-assisted successive ionic layer adsorption and reaction (SILAR) method aiming to enhance thephotoelectric conversion ability of TiO2 and correspondingly the photogenerated cathodic protection performance for 304 stainless steel. The morphology, structural, element type and valence state of the TiO2 nanocomposites are characterized by SEM, XRD and XPS, the photoelectrochemical performance of nanocomposites is studied systematically under irradiation of a simulated sunlight. The results indicate that the TiO2 nanocomposites decorated with proper amount of CdS and Bi2S3 by an optimal procedure exhibit the best performance, namely, the band gap is reduced to 2.4 eV, the light absorption range extends to the visible region, and the recombination rate of charge photogenerated carriers is greatly reduced. The electrochemical test results show that Bi2S3/CdS/TiO2 nanocomposites have the lowest charge transfer resistance and the fastest electron transfer rate, and the photocurrent density is enhanced to 850 μA·cm-2 under the condition of turning on light, which is 11.8% higher than that of CdS/TiO2 nanocomposites and 3.4 times that of TiO2 nanotube arrays. After coupling the nanocomposite with 304 stainless steel, the potential can be reduced to -0.99 V under simulated sunlight, which is about 70 mV lower than that with the undecorated TiO2 nanocomposites, and it can further enhance the photogenerated cathodic protection effect on 304 stainless steel.

Key words:  photogenerated cathodic protection      modification      Bi2S3/CdS/TiO2      304 stainless steel     
Received:  14 April 2023      32134.14.1005.4537.2023.114
ZTFLH:  TG174  
Corresponding Authors:  GAO Rongjie, E-mail:dmh206@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.114     OR     https://www.jcscp.org/EN/Y2024/V44/I2/372

Fig.1  Schematic diagram of the preparation process of TiO2 nanotube arrays
Fig.2  Schematic diagram of the preparation process of Bi2S3/CdS/TiO2 nanocomposites
Fig.3  Schematic diagram of electrochemical testing device
Fig.4  XRD patterns of TiO2 nanotubearrays, and C-15/TiO2 and B-3/C-15/TiO2 nanocomposites
Fig.5  SEM images of TiO2 nanotube (a),C-15/TiO2 nanocomposite (b), B-3/C-15/TiO2 nanocomposite (c) and EDS result of B-3/C-15/TiO2 (d)
Fig. 6  EDS elemental mappings of B-3/C-15/TiO2 nanocomposite: (a) Ti, (b) O, (c) S, (d) Cd, (e) Bi
Fig.7  XPS spectra of B-3/C-15/TiO2 nanocomposite: (a) survey spectrum and fine spectra of (b) Ti 2p, (c) O 1s, (d) Cd 3d, (e) Bi 4f and S 2p
Fig.8  UV-vis diffuse reflection spectra of TiO2 nanotube and two TiO2 nanocomposites (a), and Tauc plots of corresponding samples (b)
Fig.9  Photoluminescence spectra of TiO2 nanotube and two TiO2 nanocomposites
Fig.10  Photocurrent density-time curves of TiO2 nanotube and two TiO2 nanocomposites under intermittent visible light
Fig.11  Potential changes (a) and long-term stabilities (b) of 304 stainless steel coupled with TiO2 nanocompo-sites under intermittent visible light
Fig.12  Nyquist plots (a) and equivalent circuit diagram (b) of TiO2 nanotube and two TiO2 nanocompo-sites under simulated sunlight
SampleRs / Ω·cm2Q1 / F∙cm-2Rf / Ω·cm2Q2 / F·cm-2Rct / Ω·cm2n1n2
TiO24.601.2 × 10-24.351.7 × 10-331780.720.86
C-15/TiO227.59.0 × 10-423.16.7 × 10-4863.30.780.89
B-3/C-15/TiO228.11.3 × 10-314.88.4 × 10-4706.60.760.78
Table 1  Fitting parameters of electrochemical impedance spectra
Fig.13  Schematic diagram of energy band structures of Bi2S3, CdS and TiO2 semiconductors
1 Ma X M, Ma Z, Lu D Z, et al. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light[J]. J. Mater. Sci. Technol., 2021, 64: 21
doi: 10.1016/j.jmst.2020.01.029
2 Shao J, Wang X T, Xu H, et al. Photoelectrochemical performance of SnS2 sensitized TiO2 nanotube for protection of 304 stainless steel[J]. J. Electrochem. Soc., 2021, 168: 016511
3 Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angew. Chem. Int. Ed., 2011, 50: 2904
doi: 10.1002/anie.v50.13
4 Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy Environ., 2017, 2: 331
doi: 10.1016/j.gee.2017.02.003
5 Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
廖 彤, 马 峥, 李蕾蕾 等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39: 36
6 Wang X T, Ning X B, Shao Q, et al. ZnFeAl-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel[J]. Sci. Rep., 2018, 8: 4116
doi: 10.1038/s41598-018-22572-7
7 Ma Z. Research on the photocathodic protection performance of TiO2 NTAs Enhanced by metal sulfide[D]. Ji’nan: Shandong University, 2020
马 峥. 金属硫化物提升TiO2纳米管阵列光致阴极保护性能的研究[D]. 济南: 山东大学, 2020
8 Song W Z, Li H, Cui X Q, et al. Preparation of CdIn2S4/TiO2 nanocomposites and its photocathodic protection properties for Q235 carbon steel[J]. Mater. Prot., 2021, 54(3): 15
宋维哲, 李 红, 崔星强 等. CdIn2S4/TiO2纳米复合材料的制备及其对Q235碳钢的光生阴极保护性能[J]. 材料保护, 2021, 54(3): 15
9 Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals[J]. Electrochim. Acta, 2010, 55: 8717
doi: 10.1016/j.electacta.2010.08.017
10 Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light[J]. Nanoscale Res. Lett., 2017, 12: 80
doi: 10.1186/s11671-017-1863-9
11 Ma Z, Ma X M, Liu N Z, et al. Study on the photocathodic protection of 304 stainless steel by Ag and In2S3 co-sensitized TiO2 composite[J]. Appl. Surf. Sci., 2020, 507: 145088
doi: 10.1016/j.apsusc.2019.145088
12 Wang C J, Thompson R L, Ohodnicki P, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts[J]. J. Mater. Chem., 2011, 21: 13452
doi: 10.1039/c1jm12367j
13 Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures[J]. Adv. Funct. Mater., 2009, 19: 805
doi: 10.1002/adfm.v19:5
14 Li X L, Liu M L, Zhu D, et al. Influence of Bi sources on TiO2/Bi2S3 composite films prepared by hydrothermal method[J]. J. Mater. Sci. Mater. Electron., 2020, 31: 4662
doi: 10.1007/s10854-020-03018-1
15 Fan J Q. Preparation and photoelectric properties of CuInS2/TiO2 nanocomposite films[D]. Kaifeng: Henan University, 2012
范俊奇. CuInS2/TiO2纳米复合阵列薄膜的制备与光电性能研究[D]. 开封: 河南大学, 2012
16 Li G S, Wu L, Li F, et al. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation[J]. Nanoscale, 2013, 5: 2118
doi: 10.1039/c3nr34253k
17 Yuan Y S, Li L J, Lei J L, et al. CdS-sensitized TiO2 nanotube arrays: preparation and enhanced photocatalytic activity[J]. Asian J. Chem., 2014, 26: 3569
doi: 10.14233/ajchem
18 Zhu Y X, Wang Y F, Chen Z, et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays[J]. Appl. Catal., 2015, 498A: 159
19 Zeng Q Y, Bai J, Li J H, et al. Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation[J]. Nano Energy, 2014, 9: 152
doi: 10.1016/j.nanoen.2014.06.023
20 Wang H Y, Zhu W, Chong B H, et al. Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure[J]. Int. J. Hydrog. Energy, 2014, 39: 90
doi: 10.1016/j.ijhydene.2013.10.048
21 Li Z X, Xie Y L, Xu H, et al. Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification[J]. J. Photochem. Photobiol., 2011, 224A: 25
22 Zhu Y F, Zhang J, Xu L, et al. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films[J]. Phys. Chem. Chem. Phys., 2013, 15: 4041
doi: 10.1039/c3cp43572e
23 Wu Z, Yuan D, Lin S, et al. Enhanced photoelectrocatalytic activity of Bi2S3-TiO2 nanotube arrays hetero-structure under visible light irradiation[J]. Int. J. Hydrog. Energy, 2020, 45: 32012
doi: 10.1016/j.ijhydene.2020.08.258
24 Qiao J L, Wang Q Y, Ye J X, et al. Enhancing photoelectrochemical performance of TiO2 nanotube arrays by CdS and Bi2S3 co-sensitization[J]. J. Photochem. Photobiol., 2016, 319-320A: 34
25 Lv P, Fu W Y, Yang H B, et al. Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity[J]. CrystEngComm, 2013, 15: 7548
doi: 10.1039/c3ce40863a
26 Zheng X H, Das S, Gu Y H, et al. Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance[J]. Ceram. Int., 2020, 46: 12050
doi: 10.1016/j.ceramint.2020.01.246
27 Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 267
28 Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
29 Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping[J]. Corros. Sci., 2013, 68: 101
doi: 10.1016/j.corsci.2012.10.040
30 Wan Y L, Han M M, Yu L M, et al. Fabrication and photoelectrochemical properties of TiO2/CuInS2/Bi2S3 core/shell/shell nanorods electrodes[J]. RSC Adv., 2015, 5: 78902
doi: 10.1039/C5RA14548A
31 Yu J D, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. J. Mater. Chem., 2015, 3A: 22218
32 Huang G Z, Zhang J, Jiang F, et al. Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets[J]. J. Solid State Chem., 2020, 281: 121041
doi: 10.1016/j.jssc.2019.121041
33 Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. J. Phys. Chem., 2011, 115C: 7339
34 Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chem. Mater., 2005, 17: 2596
doi: 10.1021/cm049099p
35 Zhang L, Wang X T, Li H, et al. Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel[J]. Corros. Prot., 2015, 36: 258
张 亮, 王秀通, 李 红 等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能[J]. 腐蚀与防护, 2015, 36: 258
36 Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light[J]. J. Alloy. Compd., 2015, 618: 734
doi: 10.1016/j.jallcom.2014.08.234
37 Kong Y Y, Sun M X, Hong X F, et al. The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties[J]. Ionics, 2021, 27: 4371
doi: 10.1007/s11581-021-04157-z
[1] LI Shuo, LI Xichao, ZHAO Jingxiang, DAI Zuoqiang, XU Bin, SUN Mingyue, ZHENG Lili. Research Progress on Life-extension of Gun Barrel Based on Coating Modification[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[2] CHEN Shirun, CHEN Wenge, QIAN Ying, ZHANG Hui. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[3] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[4] CAO Jingyi, LI Jing, YIN Wenchang, MENG Fandi, LIU Li. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[5] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[6] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[7] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[8] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[9] LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing, MENG Guozhe. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[10] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[11] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[12] LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[13] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[14] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[15] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
No Suggested Reading articles found!