|
|
Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel |
YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
Cite this article:
YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 372-380.
|
Abstract TiO2 nanotube arrays are decorated with CdS and Bi2S3 by an ultrasonic-assisted successive ionic layer adsorption and reaction (SILAR) method aiming to enhance thephotoelectric conversion ability of TiO2 and correspondingly the photogenerated cathodic protection performance for 304 stainless steel. The morphology, structural, element type and valence state of the TiO2 nanocomposites are characterized by SEM, XRD and XPS, the photoelectrochemical performance of nanocomposites is studied systematically under irradiation of a simulated sunlight. The results indicate that the TiO2 nanocomposites decorated with proper amount of CdS and Bi2S3 by an optimal procedure exhibit the best performance, namely, the band gap is reduced to 2.4 eV, the light absorption range extends to the visible region, and the recombination rate of charge photogenerated carriers is greatly reduced. The electrochemical test results show that Bi2S3/CdS/TiO2 nanocomposites have the lowest charge transfer resistance and the fastest electron transfer rate, and the photocurrent density is enhanced to 850 μA·cm-2 under the condition of turning on light, which is 11.8% higher than that of CdS/TiO2 nanocomposites and 3.4 times that of TiO2 nanotube arrays. After coupling the nanocomposite with 304 stainless steel, the potential can be reduced to -0.99 V under simulated sunlight, which is about 70 mV lower than that with the undecorated TiO2 nanocomposites, and it can further enhance the photogenerated cathodic protection effect on 304 stainless steel.
|
Received: 14 April 2023
32134.14.1005.4537.2023.114
|
|
Corresponding Authors:
GAO Rongjie, E-mail:dmh206@ouc.edu.cn
|
1 |
Ma X M, Ma Z, Lu D Z, et al. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light[J]. J. Mater. Sci. Technol., 2021, 64: 21
doi: 10.1016/j.jmst.2020.01.029
|
2 |
Shao J, Wang X T, Xu H, et al. Photoelectrochemical performance of SnS2 sensitized TiO2 nanotube for protection of 304 stainless steel[J]. J. Electrochem. Soc., 2021, 168: 016511
|
3 |
Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angew. Chem. Int. Ed., 2011, 50: 2904
doi: 10.1002/anie.v50.13
|
4 |
Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy Environ., 2017, 2: 331
doi: 10.1016/j.gee.2017.02.003
|
5 |
Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
|
|
廖 彤, 马 峥, 李蕾蕾 等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39: 36
|
6 |
Wang X T, Ning X B, Shao Q, et al. ZnFeAl-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel[J]. Sci. Rep., 2018, 8: 4116
doi: 10.1038/s41598-018-22572-7
|
7 |
Ma Z. Research on the photocathodic protection performance of TiO2 NTAs Enhanced by metal sulfide[D]. Ji’nan: Shandong University, 2020
|
|
马 峥. 金属硫化物提升TiO2纳米管阵列光致阴极保护性能的研究[D]. 济南: 山东大学, 2020
|
8 |
Song W Z, Li H, Cui X Q, et al. Preparation of CdIn2S4/TiO2 nanocomposites and its photocathodic protection properties for Q235 carbon steel[J]. Mater. Prot., 2021, 54(3): 15
|
|
宋维哲, 李 红, 崔星强 等. CdIn2S4/TiO2纳米复合材料的制备及其对Q235碳钢的光生阴极保护性能[J]. 材料保护, 2021, 54(3): 15
|
9 |
Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals[J]. Electrochim. Acta, 2010, 55: 8717
doi: 10.1016/j.electacta.2010.08.017
|
10 |
Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light[J]. Nanoscale Res. Lett., 2017, 12: 80
doi: 10.1186/s11671-017-1863-9
|
11 |
Ma Z, Ma X M, Liu N Z, et al. Study on the photocathodic protection of 304 stainless steel by Ag and In2S3 co-sensitized TiO2 composite[J]. Appl. Surf. Sci., 2020, 507: 145088
doi: 10.1016/j.apsusc.2019.145088
|
12 |
Wang C J, Thompson R L, Ohodnicki P, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts[J]. J. Mater. Chem., 2011, 21: 13452
doi: 10.1039/c1jm12367j
|
13 |
Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures[J]. Adv. Funct. Mater., 2009, 19: 805
doi: 10.1002/adfm.v19:5
|
14 |
Li X L, Liu M L, Zhu D, et al. Influence of Bi sources on TiO2/Bi2S3 composite films prepared by hydrothermal method[J]. J. Mater. Sci. Mater. Electron., 2020, 31: 4662
doi: 10.1007/s10854-020-03018-1
|
15 |
Fan J Q. Preparation and photoelectric properties of CuInS2/TiO2 nanocomposite films[D]. Kaifeng: Henan University, 2012
|
|
范俊奇. CuInS2/TiO2纳米复合阵列薄膜的制备与光电性能研究[D]. 开封: 河南大学, 2012
|
16 |
Li G S, Wu L, Li F, et al. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation[J]. Nanoscale, 2013, 5: 2118
doi: 10.1039/c3nr34253k
|
17 |
Yuan Y S, Li L J, Lei J L, et al. CdS-sensitized TiO2 nanotube arrays: preparation and enhanced photocatalytic activity[J]. Asian J. Chem., 2014, 26: 3569
doi: 10.14233/ajchem
|
18 |
Zhu Y X, Wang Y F, Chen Z, et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays[J]. Appl. Catal., 2015, 498A: 159
|
19 |
Zeng Q Y, Bai J, Li J H, et al. Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation[J]. Nano Energy, 2014, 9: 152
doi: 10.1016/j.nanoen.2014.06.023
|
20 |
Wang H Y, Zhu W, Chong B H, et al. Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure[J]. Int. J. Hydrog. Energy, 2014, 39: 90
doi: 10.1016/j.ijhydene.2013.10.048
|
21 |
Li Z X, Xie Y L, Xu H, et al. Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification[J]. J. Photochem. Photobiol., 2011, 224A: 25
|
22 |
Zhu Y F, Zhang J, Xu L, et al. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films[J]. Phys. Chem. Chem. Phys., 2013, 15: 4041
doi: 10.1039/c3cp43572e
|
23 |
Wu Z, Yuan D, Lin S, et al. Enhanced photoelectrocatalytic activity of Bi2S3-TiO2 nanotube arrays hetero-structure under visible light irradiation[J]. Int. J. Hydrog. Energy, 2020, 45: 32012
doi: 10.1016/j.ijhydene.2020.08.258
|
24 |
Qiao J L, Wang Q Y, Ye J X, et al. Enhancing photoelectrochemical performance of TiO2 nanotube arrays by CdS and Bi2S3 co-sensitization[J]. J. Photochem. Photobiol., 2016, 319-320A: 34
|
25 |
Lv P, Fu W Y, Yang H B, et al. Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity[J]. CrystEngComm, 2013, 15: 7548
doi: 10.1039/c3ce40863a
|
26 |
Zheng X H, Das S, Gu Y H, et al. Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance[J]. Ceram. Int., 2020, 46: 12050
doi: 10.1016/j.ceramint.2020.01.246
|
27 |
Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
|
|
苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 267
|
28 |
Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
|
|
鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
|
29 |
Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping[J]. Corros. Sci., 2013, 68: 101
doi: 10.1016/j.corsci.2012.10.040
|
30 |
Wan Y L, Han M M, Yu L M, et al. Fabrication and photoelectrochemical properties of TiO2/CuInS2/Bi2S3 core/shell/shell nanorods electrodes[J]. RSC Adv., 2015, 5: 78902
doi: 10.1039/C5RA14548A
|
31 |
Yu J D, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. J. Mater. Chem., 2015, 3A: 22218
|
32 |
Huang G Z, Zhang J, Jiang F, et al. Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets[J]. J. Solid State Chem., 2020, 281: 121041
doi: 10.1016/j.jssc.2019.121041
|
33 |
Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. J. Phys. Chem., 2011, 115C: 7339
|
34 |
Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chem. Mater., 2005, 17: 2596
doi: 10.1021/cm049099p
|
35 |
Zhang L, Wang X T, Li H, et al. Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel[J]. Corros. Prot., 2015, 36: 258
|
|
张 亮, 王秀通, 李 红 等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能[J]. 腐蚀与防护, 2015, 36: 258
|
36 |
Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light[J]. J. Alloy. Compd., 2015, 618: 734
doi: 10.1016/j.jallcom.2014.08.234
|
37 |
Kong Y Y, Sun M X, Hong X F, et al. The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties[J]. Ionics, 2021, 27: 4371
doi: 10.1007/s11581-021-04157-z
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|