Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 381-388    DOI: 10.11902/1005.4537.2023.097
Current Issue | Archive | Adv Search |
Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance
SI Weiting, ZHANG Jihao, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266400, China
Cite this article: 

SI Weiting, ZHANG Jihao, GAO Rongjie. Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 381-388.

Download:  HTML  PDF(10727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superamphiphobic surface films were successfully prepared on AZ31B Mg-alloy via etching with HNO3 solution and afterwards modifying with PFDTES (1H, 1H, 2H,2H-perfluorodecyltriethoxysilane). The superamphiphobic surface film were characterized by means of scanning electron microscope (SEM), X-ray diffractometry (XRD), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectrometer (XPS). The static contact angle (CA) was measured by optical contact angle meter to estimate their wettability, The electrochemical performance was evaluated in 3.5%NaCl aqueous solution by electrochemical work-station to estimate their corrosion resistance. Results show that the non-uniform distribution of chemical composition of the Mg-alloy leads to different dissolution rates and degrees of the alloy surface during the etching process, resulting in different morphology on surface. The special microstructure formed on the etched alloy surface, combined with the modification of low surface energy materials (PFDTES), enables the formation of a film with excellent liquid repellency on Mg-alloy. The contact angles (CAs) of water and ethylene glycol on the modified Mg-alloy surface were 159.3° and 155.2° respectively. In contrast to the bare Mg-alloy, the free corrosion potential of the superamphiphobic film covered Mg-alloy shifted positively by 297 mV, and the corrosion current density decreases by more than 3 orders of magnitude, the charge transfer resistance increases by more than 2 orders of magnitude, in other word, the anti-corrosion performance of the AZ31B Mg-alloy was well improved by the surface modification. Even after soaking in 3.5%NaCl solution for 72 h, the Mg-alloy with superamphiphobic film still maintains good corrosion resistance.

Key words:  superamphiphobic surface      AZ31B magnesium alloy      chemical etching      anti-corrosion     
Received:  03 April 2023      32134.14.1005.4537.2023.097
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China-Shandong Provincial Joint Fund(U1706221)
Corresponding Authors:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.097     OR     https://www.jcscp.org/EN/Y2024/V44/I2/381

Fig.1  Schematic diagram of preparation process of superamphiphobic surface on Mg-alloy
Fig.2  Effect of etching time on contact angle

Liquid

Surface

tension (20oC)

mN·m-1

Bare

Sanding

Sanding + modifying

Sanding +etching

Sanding + etching + modifying
Water72.8°75.8°34.1°128.8°13.6°159.3°
Ethylene glycol47.7°63.5°13.2°113.6°155.2°
Table 1  Variation of contact angle on samples with different liquids under different processing conditions
Fig.3  Surface morphologies of bare sample (a) and superamphiphobic sample (b-d)
Fig.4  XRD pattern of bare sample and the superamphiphobic sample
Fig.5  EDS pattern of the superamphiphobic sample
Fig.6  XPS spectra of the superamphiphobic sample: (a) survey, (b) C 1s, (c) Si 2p, (d) F 1s
Fig.7  Electrochemical test of the bare sample and superamphiphobic sample in 3.5%NaCl solution: (a) Nyquist plot, (b) Bode impedance modules plot, (c) Bode phase angles plot, (d) potentiodynamic polarization curve
Fig.8  Equivalent circuit: (a) bare sample and superamphiphobic sample immersed for above 12 h, (b) superamphiphobic sample immersed for 0-12 h
SampleRs
Ω·cm2
CPE
Y0 (S·sec n) n
Rct
Ω·cm2
Rf
Ω·cm2
Cdl
F·cm-2
RL
Ω·cm2
L
H·cm2
bare13.912.049 × 10-50.924041.93//57.0140.93
0 h18.713.239 × 10-60.72978580175.01.148 × 10-787946517
2 h14.373.506 × 10-60.8240217259.511.298 × 10-6909.44942
12 h11.686.741 × 10-60.8928133121.132.638 × 10-6885.38950
48 h17.282.927 × 10-50.9507923.8//364.083.07
72 h12.023.899 × 10-50.9131357.6//405.71570
Table 2  Electrochemical fitting parameters
Fig.9  Macromorphologies of bare sample (a-d) and superampiphobic sample (e-h) after immersed in 3.5%NaCl solution for 2 h (a, e), 12 h (b, f), 48 h (c, g) and 72 h (d, h)
1 Burkert A, Müller T, Lehmann J, et al. Long-term corrosion behaviour of stainless steels in marine atmosphere[J]. Mater. Corros., 2018, 69: 20
2 Xing W H, Wang X H, Guo B X, et al. Study of the corrosion characteristics of the metal materials of an aero-engine under a marine atmosphere[J]. Mater. Corros., 2018, 69: 1861
3 Yi E, Kang H S, Lim S M, et al. Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications[J]. J. Membrane Sci., 2022, 648: 120363
doi: 10.1016/j.memsci.2022.120363
4 Tang Y, Nong Z S, Wu B L, et al. Study of novel, thermally resistant Mg alloy with dual-phase[J]. Mater. Sci. Technol., 2021, 37: 1
doi: 10.1080/02670836.2020.1859711
5 Kamei J, Saito Y, Yabu H. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film[J]. Langmuir, 2014, 30: 14118
doi: 10.1021/la5035454 pmid: 25401223
6 Chen T C, Yan W, Liu H T, et al. Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance[J]. J. Mater. Sci., 2017, 52: 4675
doi: 10.1007/s10853-016-0710-1
7 Gray-Munro J, Campbell J. Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J]. Mater. Lett., 2017, 189: 271
doi: 10.1016/j.matlet.2016.11.102
8 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on Al-alloy and its corrosion resistance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
9 Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 11240
doi: 10.1073/pnas.2001972117 pmid: 32393646
10 Cheng Y, Zhu T X, Li S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chem. Eng. J., 2019, 355: 290
doi: 10.1016/j.cej.2018.08.113
11 Zhang S, Shu X Y, Chen S Z, et al. Rapid immobilization of simulated radioactive soil waste by microwave sintering[J]. J. Hazard. Mater., 2017, 337: 20
doi: S0304-3894(17)30339-4 pmid: 28501640
12 Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions[J]. J. Magnes. Alloy., 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
13 Bai C Y, Hu C B, Zhang X, et al. A rapid two-step method for fabrication of superhydrophobic-superoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J]. Colloids Surf., 2022, 651: 129635
doi: 10.1016/j.colsurfa.2022.129635
14 Wan H R, Hu X F. One-step solve-thermal process for the construction of anticorrosion bionic superhydrophobic surfaces on magnesium alloy[J]. Mater. Lett., 2016, 174: 209
doi: 10.1016/j.matlet.2016.03.104
15 Xu W J, Song J L, Sun J, et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4404
doi: 10.1021/am2010527
16 Feng L B, Zhu Y L, Fan W B, et al. Fabrication and corrosion resistance of superhydrophobic magnesium alloy[J]. Appl. Phys., 2015, 120A: 561
17 Liang M M, Wei Y H, Hou L F, et al. Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method[J]. J. Alloy. Compd., 2016, 656: 311
doi: 10.1016/j.jallcom.2015.09.234
18 Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
19 Gao R, Wang J, Zhang X F, et al. Fabrication of superhydrophobic magnesium alloy through the oxidation of hydrogen peroxide[J]. Colloids Surf., 2013, 436A: 906
20 Liu Y, Yao W G, Yin X M, et al. Controlling wettability for improved corrosion inhibition on magnesium alloy as biomedical implant materials[J]. Adv. Mater. Interfaces, 2016, 3: 1500723
doi: 10.1002/admi.v3.8
21 Zhang X, Ma Q Y, Dai Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy[J]. Appl. Surf. Sci., 2018, 427: 897
doi: 10.1016/j.apsusc.2017.09.024
22 Zhang H L, Li D K, Huang J X, et al. Advance in structural classification and stability study of superamphiphobic surfaces[J]. J. Bionic Eng., 2023, 20: 366
doi: 10.1007/s42235-022-00270-5
23 Rezayi T, Entezari M H, Moosavi F. The variation of surface free energy of Al during superhydrophobicity processing[J]. Chem. Eng. J., 2017, 322: 181
doi: 10.1016/j.cej.2017.04.023
24 Emelyanenko K A, Chulkova E V, Semiletov A M, et al. The potential of the superhydrophobic state to protect magnesium alloy against corrosion[J]. Coatings, 2022, 12: 74
doi: 10.3390/coatings12010074
25 Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
26 Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces[J]. Appl. Surf. Sci., 2017, 402: 301
doi: 10.1016/j.apsusc.2017.01.091
27 Tang L L, Wang N, Han Z Y, et al. Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J]. Colloids Surf., 2020, 594A: 124655
28 Xu B Q, Sun J P, Han J, et al. Effect of hierarchical precipitates on corrosion behavior of fine-grain magnesium-gadolinium-silver alloy[J]. Corros. Sci., 2022, 194: 109924
doi: 10.1016/j.corsci.2021.109924
29 Liu K S, Zhang M L, Zhai J, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Appl. Phys. Lett., 2008, 92: 183103
doi: 10.1063/1.2917463
30 Zhang J Y, Kang Z X. Effect of different liquid-solid contact models on the corrosion resistance of superhydrophobic magnesium surfaces[J]. Corros. Sci., 2014, 87: 452
doi: 10.1016/j.corsci.2014.07.010
[1] LIU Guo. Discussion on DC Voltage Gradient (DCVG) Measurement and %IR Calculation of Buried Coating Pipeline[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[2] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[3] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[4] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[5] YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[6] LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[7] LEI Yanhua, LIU Ningxuan, ZHANG Yuliang, CHANG Xueting, LIU Tao. Preparation, Corrosion- and Wear-resistance of Polymethyl Methacrylate Coating Modified with Particles of Basalt/cerium Oxide Composite[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[8] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[9] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[10] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[11] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[12] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[13] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[14] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[15] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
No Suggested Reading articles found!