Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 493-500    DOI: 10.11902/1005.4537.2021.004
Current Issue | Archive | Adv Search |
Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate
ZHAO Kang, LI Xiaoqi, WANG Mingtao, LIU Yuxi, JIANG Huawei, YANG Qirong, WANG Liwei()
School of Electromechanic Engineering, QingDao University, Qingdao 266071, China
Download:  HTML  PDF(4628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of four anticorrosion alloys, including 316L stainless steel, 254SMo stainless steel, C276 alloy and Inconel 740H alloy, in an artificial flue-gas condensate of pH 1.09 which aims to simulate the flue-gas condensate of ultra-supercritical boilers, is studied by means of open-circuit potential- and potentiodynamic polarization curve-measurement, as well as electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. It shows that all the four alloys exhibit passivation characteristics in the artificial flue-gas condensate. The deterioration process of the formed passive films by the aggressive ions in the flue-gas condensate is different for the four alloys with individually unique chemical composition. Among them, the passivation current density is the lowest and the polarization resistance is the highest for 254SMo stainless steel, which may be ascribed to that the formed passive film of high quality contains high Cr content, and appropriate amount of Mo and Ni on 254SMo stainless steel.

Key words:  corrosion-resistant alloy      flue gas condensate      corrosion      passivation     
Received:  09 January 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51701102)
Corresponding Authors:  WANG Liwei     E-mail:  ustbwangliwei@126.com
About author:  WANG Liwei, E-mail:ustbwangliwei@126.com

Cite this article: 

ZHAO Kang, LI Xiaoqi, WANG Mingtao, LIU Yuxi, JIANG Huawei, YANG Qirong, WANG Liwei. Corrosion Behavior of Four Corrosion-resistant Alloys in Ultra-supercritical Boiler Flue Gas Condensate. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 493-500.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.004     OR     https://www.jcscp.org/EN/Y2021/V41/I4/493

MaterialCCrNiMoCuNSiMnSPWCoAlTiNbFe
254SMo0.01220.3017.96.10.770.20.430.180.0010.022---------------Bal.
316L0.0217.510.42.7---0.150.41.20.010.02---------------Bal.
Inconel 740H0.0325.048.270.5------0.50.3---------200.91.82.0Bal.
C2760.00115.8857.6915.64------0.030.52------3.381.51---------Bal.
Table 1  Chemical compositions of the four materials (mass fraction / %)
Fig.1  Potentiodynamic polarization curves of four materials in simulated desulfurized flue gas condensates
Fig.2  Long-term open circuit potential of different materials in simulated desulfurized flue gas condensates
Fig.3  Nyquist (a) and Bode (b) plots of four materials in simulated desulfurized flue gas condensates
MaterialRs / Ω·cm2Q1 / 10-6 Ω-1·cm-2·snnR1 / kΩ·cm2Q2 / 10-6 Ω-1·cm-2·snnR2 / kΩ·cm2R / kΩ·cm2
254SMo6.85487.170.890.2137.990.971408.001408.21
Inconel 740H7.0379.20.890.1829.90.98793.30793.48
C2766.90112.90.890.1831.01.00122.00122.18
316L6.5398.60.880.233.90.94329.00329.20
Table 2  Fitted electrochemical parameters for EIS of four materials
Fig.4  Detailed XPS spectra of O 1s of the passive film of 254SMo stainless steel (a), 316L stainless steel (b), Inconel 740H alloy (c) and C276 alloy (d)
Fig.5  Detailed XPS spectra of Fe 2p3/2 of the passive film of 254SMo stainless steel (a), 316L stainless steel (b), Inconel 740H alloy (c) and C276 alloy (d)
Fig.6  Detailed XPS spectra of Cr 2p3/2 of the passive film of 254SMo stainless steel (a), 316L stainless steel (b), Inconel 740H alloy (c) and C276 alloy (d)
Fig.7  Detailed XPS spectra of Mo 3d of the passive film of 254SMo stainless steel (a), 316L stainless steel (b), Inconel 740H alloy (c) and C276 alloy (d)
Fig.8  Detailed XPS spectra of Ni 2p3/2 of the passive film of 254SMo stainless steel (a), 316L stainless steel (b), Inconel 740H alloy (c) and C276 alloy (d)
Fig.9  Fractions of the difference species in the passive film: (a) metallic oxide/hydroxide, (b) oxygen-containing species
1 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
2 Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
王长罡, 魏洁, 魏欣等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43
3 Rajendran N, Latha G, Rajeswari S. Localised corrosion behaviour of alloys 33 and 24 in simulated flue gas desulphurisation environment [J]. Br. Corros. J., 2002, 37: 276
4 He Y S, Yoo K B, Park J C, et al. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system [J]. Mater. Charact., 2018, 142: 540
5 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
6 Jansen P, Hansen V, Jensen T. Corrosion experience with carbon steel in spray absorption FGD plant [J]. Mater. Corr., 1992, 43: 310
7 Dahl L. Corrosion in flue gas desulfurization plants and other low temperature equipment [J]. Mater. Corros., 1992, 43: 298
8 Roth P. Corrosion-resistant special steels for flue gas desulphurisation plants [J]. Mater. Corros., 1992, 43: 275
9 Darowicki K, Krakowiak S. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment [J]. Anti-Corros. Methods Mater., 1999, 46: 19
10 Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system [J]. Corros. Sci., 2008, 50: 1195
11 Shoemaker L, Crum J, Maitra D, et al. Recent experience with stainless steels in FGD air pollution control service [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11167
12 Paul L D, Kingseed D A, Van Gansbeke L. Experience with the new Ni-Cr-Mo alloy UNS N06200 in flue gas desulfurization (FGD) systems [A]. Corrosion 2000 [C]. Orlando, Florida, 2000: 11
13 Zeng Y M, Li K Y, Hughes R, et al. Corrosion mechanisms and materials selection for the construction of flue gas component in advanced heat and power systems [J]. Ind. Eng. Chem. Res., 2017, 56: 14141
14 Yang Y G, Zhang T, Shao Y W, et al. In situ study of dew point corrosion by electrochemical measurement [J]. Corros. Sci., 2013, 71: 62
15 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
16 Jin Z H, Ge H H, Lin W W, et al. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution [J]. Appl. Surf. Sci., 2014, 322: 47
17 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
18 Rovere C A D, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
19 Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
20 Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
21 Ries L A S, Da Cunha Belo M, Ferreira M G S, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corros. Sci., 2008, 50: 676
22 Lazauskas A, Grigaliūnas V, Guobienė A, et al. Atomic force microscopy and X-ray photoelectron spectroscopy evaluation of adhesion and nanostructure of thin Cr films [J]. Thin Solid Films, 2012, 520: 6328
23 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
24 Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
25 Montemor M F, Simões A M P, Ferreira M G S, et al. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels [J]. Corros. Sci., 1999, 41: 17
[1] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[2] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[3] JIANG Jun, WANG Junyang, JIN Wujun, JING Weide, WAN Shanhong, YI Gewen, FAN Wei, KOU Jinsong. Research Progress on Corrosion and Anti-corrosion Technology of Ribbed Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449.
[4] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[5] SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[6] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[7] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[8] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[9] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[10] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[11] LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[12] SUN Dan, LI Wei, WEI Runzhi, WANG Sheng, HAN Jiaxing, LIU Zheng. Theoretical Evaluation of 2-aminofluorenic Double Schiff Base Corrosion Inhibitor Based on Quantum Chemistry[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[13] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[14] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[15] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
No Suggested Reading articles found!