Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 609-616    DOI: 10.11902/1005.4537.2020.222
Current Issue | Archive | Adv Search |
Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+
WANG Jiaming1, YANG Haodong1, DU Min1(), PENG Wenshan2, CHEN Hanlin1, GUO Weimin2, LIN Cunguo2()
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Download:  HTML  PDF(8171KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B10 Cu-Ni alloy is widely used in condenser and other facilities due to its good corrosion resistance in sea water. In practical application, it was found that the concentration of NH4+ was relatively high in sea water in the off shore port area and B10 Cu-Ni alloy was more likely to perforate. In this paper, the corrosion behavior of B10 Cu-Ni alloy in natural seawater and seawater containing 10 mg/L NH4+ was comparatively studied, in order to clarify the influence mechanism of NH4+ on the corrosion of B10 Cu-Ni alloy. The average corrosion rate, electrochemical characteristics, morphology and chemical composition of corrosion products of the steel were characterized by means of mass loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) with EDS and X-ray photoelectron spectroscopy (XPS).The results indicated that the addition of NH4+ reduced the content of protective Cu2O in the corrosion products, thus increasing the corrosion rate of B10 Cu-Ni alloy in seawater and promoting the pitting tendency.

Key words:  NH4+ pollution      seawater      B10 Cu-Ni alloy      Cu2O      corrosion product film     
Received:  04 November 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U1706221)
Corresponding Authors:  DU Min,LIN Cunguo     E-mail:  ssdm99@ouc.edu.cn;lincg@sunrui.net
About author:  LIN Cunguo, E-mail: lincg@sunrui.net
DU Min, E-mail: ssdm99@ouc.edu.cn

Cite this article: 

WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 609-616.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.222     OR     https://www.jcscp.org/EN/Y2021/V41/I5/609

Fig.1  Corrosion rates of B10 Cu-Ni alloy in two seawater systems
Fig.2  Open circuit potential of B10 Cu-Ni alloy
Fig.3  Nuquist (a, b) and Bode (c, d) plots of B10 Cu-Ni alloy at natural seawater (a, c) and seawater with NH+4 (b, d)
Fig.4  Physical model for simulating an equivalent circuit to fit the EIS data
MediumTime / dRs / Ω·cm2Cdl1 / μF·cm-2nd1Rf / Ω·cm2Cdl2 / μF·cm-2nd2Rct / Ω·cm2
Seawater112.3187.40.61424843078.30.77454748
714.1276.30.76965322274.10.814217645
1519.7768.20.81415150169.20.886916314
2022.3135.10.84325927034.50.887616239
2420.2119.50.75543740223.60.793312778
3018.1555.40.77424732144.20.796413312
Seawater with NH4+113.3588.60.58314433987.40.74214938
724.3179.50.71674817477.30.75459945
1510.3666.40.74945132571.60.89559866
2023.3332.10.81254254338.50.81469742
2415.1541.60.72474798027.50.80322389
3016.1459.10.76884543646.30.77424445
Table 1  Fitting data of EIS of B10 Cu-Ni alloy in the corrosive medium
Fig.5  Polarization curves of B10 Cu-Ni alloy in two seawater systems natural seawater (a) and seawater with NH4+ (b)
MediumTime / dOCPAg/AgCl / Vba / mV·dec-1Icorr / μA·cm-2Ecorr vs Ag/AgCl / V
Seawater1-0.24338.641.60-0.252
15-0.25148.81.28-0.259
30-0.31948.10.33-0.312
Seawater with NH4+1-0.24342.12.21-0.249
15-0.23747.81.59-0.249
30-0.30367.61.61-0.298
Table 2  Fitting data of B10 Cu-Ni alloy polarization curve
Fig.6  SEM images of corrosion product (a, b) and derusted substrate surface (c, d) of B10 Cu-Ni alloy immersed in the corrosive medium at natural seawater (a, c) and seawater with NH4+ (b, d) for 30 d
Fig.7  EDS results of corrosion products of B10 Cu-Ni alloy immersed in natural seawater (a) and seawater with NH4+ (b) for 30 d
ElementNatural seauaterSeawater with NH4+
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
Mg0.710.940.480.64
Al0.340.401.211.46
S0.940.951.041.05
Cl1.541.401.441.32
Ca0.400.320.530.43
Mn0.620.370.640.38
Fe4.672.693.041.77
Ni17.569.6214.538.05
Cu42.5021.5047.5524.36
Table 3  EDS result of B10 Cu-Ni alloy after immersion in two seawater systems for 30 d
Fig.8  XPS spectrograms of the corrosion product of B10 Cu-Ni alloy immersed in natural seawater (a~d) and seawater with NH4+ (e~h) for 30 d: (a, e) all sprctrum, (b, f) Cu2p, (c, g) O1s, (d, h) Ni2p
Fig.9  Compounds corresponding to the XPS spectrum
1 Liu T J, Chen H P, Zhang W F, et al. Accelerated corrosion behavior of B10 Cu-Ni alloy in seawater [J] J. Mater. Eng., 2017, 45(5): 31
刘天娇, 陈惠鹏, 张卫方等. B10铜镍合金海水加速腐蚀行为 [J]. 材料工程, 2017, 45(5): 31
2 Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
石泽耀, 刘斌, 刘岩等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
3 Zhu X L, Lin L Y, Lei T Q. Review on corrosion behaviors of Cu-Ni alloys in seawater [J]. Corros. Sci. Prot. Technol., 1997, 9(1): 48
朱小龙, 林乐耘, 雷廷权. Cu-Ni合金海水腐蚀行为研究进展 [J]. 腐蚀科学与防护技术, 1997, 9(1): 48
4 Yang B J, Chen X F, Yao J H, et al. Corrosion behavior of copper and its alloys in freshwater-seawater alternate circumstance [J]. Equip. Environ. Eng., 2017, 14(2): 24
杨博均, 陈翔峰, 姚敬华等. 铜及铜合金在淡海水交替自然环境条件下的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(2): 24
5 Chen H Y, Zhu Y L. Selective corrosion of BFe10-1-1 alloy in NaCl solution [J]. Corros. Prot., 2006, 27: 404
陈海燕, 朱有兰. B10铜镍合金在NaCl溶液中腐蚀行为的研究 [J]. 腐蚀与防护, 2006, 27: 404
6 Dowsett M, Adriaens A, Martin C, et al. The use of synchrotron X-rays to observe copper corrosion in real time [J]. Anal. Chem., 2012, 84: 4866
7 Ji S Y, Wang C G, Cai W, et al. Corrosion mechanism of Cu-Ni alloy cooler at Xiluodu hydropower station [J]. Mech. Electr. Tech. Hydro. Sta., 2019, 42(7): 71
姬升阳, 王长罡, 蔡伟等. 溪洛渡水电站铜镍合金冷却器腐蚀机理研究 [J]. 水电站机电技术, 2019, 42(7): 71
8 Cheng D B, Guo Y, Liu X H, et al. Studies on corrosion and protection of heat exchange tubes of B30 copper-nickel alloy [J]. Dev. Appl. Mater., 2020, 35(1): 84
程德彬, 郭悦, 刘雪辉等. B30铜镍合金换热管腐蚀与防护研究进展 [J]. 材料开发与应用, 2020, 35(1): 84
9 Zhao Y H, Lin L Y, Cui D W. Localized corrosion of copper and its alloys in seawater at four test sits along china coast for 16 years [J]. Corros. Sci. Prot. Technol., 2003, 15: 266
赵月红, 林乐耘, 崔大为. 铜及铜合金在我国实海海域暴露16年局部腐蚀规律 [J]. 腐蚀科学与防护技术, 2003, 15: 266
10 Zhu X L, Li Z J, Xu J. Progress in research on formation and rupture mechanism of Seawater corrosion products of Cu-NI alloy [J]. Chin. J. Rare Met., 1997, 21(6): 463
朱小龙, 李中建, 徐杰. Cu-Ni合金海水腐蚀产物膜的形成与破裂机制研究进展 [J]. 稀有金属, 1997, 21(6): 463
11 Wu Q M, Chen S Z, Yu Z G, et al. Dissolved inorganic nitrogen in the Southern Yellow Sea [J]. J. Ocean Univ. Qingdao, 2001, 31: 129
吴强明, 陈淑珠, 于志刚等. 黄海南部的溶解无机氮 [J]. 青岛海洋大学学报 (自然科学版), 2001, 31: 129
12 Sun P X, Wang Z L, Zhan R, et al. Study on dissolved inorganic nitrogen distributions and eutrophication in the Jiaozhou bay [J]. Adv. Mar. Sci., 2005, 23: 466
孙丕喜, 王宗灵, 战闰等. 胶州湾海水中无机氮的分布与富营养化研究 [J]. 海洋科学进展, 2005, 23: 466
13 Zhao X D, Zhu C J, Ju P, et al. The forms and distributions of nitrogen of seawater in eastern Jiaozhou bay [J]. Mar. Sci., 1998, 12 (1): 3
赵夕旦, 祝陈坚, 举鹏等. 胶州湾东部海水中氮的含量和分布 [J]. 海洋科学, 1998, 12(1): 3
14 Zhang Z B, Liu L S. Marine Chemistry Marine Chemistry [M]. Ji’nan: Shandong Education Press, 2004
张正斌, 刘莲生. 海洋化学 [M]. 济南: 山东教育出版社, 2004
15 Yu H, Ding L, Liu S W, et al. Research progress on determination of ammonia nitrogen in seawater [J]. Chem. Bioeng., 2017, 34(5): 1
于涵, 丁兰, 刘淑文等. 海水氨氮检测技术研究进展 [J]. 化学与生物工程, 2017, 34(5): 1
16 Pugh E N, Montague W G, Westwood A R C. Stress-corrosion cracking of copper [J]. Corros. Sci., 1966, 6: 345
17 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. The effect of submicron ammonium sulfate particles on the corrosion of copper [J]. J. Electrochem. Soc., 1993, 140: 1902
18 Al-Hashem A, Carew J. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater [J]. Desalination, 2002, 150: 255
19 Wang J H, Jiang X X, Li S Z. Corrosion wear behavior of copper alloys in 3.5%NaCl+NH3(NH4+) solution [J]. Acta Metall. Sin., 1997, 33(12): 1268
王吉会, 姜晓霞, 李诗卓. 铜合金在3.5%NaCl+NH3(NH4+) 溶液中的腐蚀磨损行为 [J]. 金属学报, 1997, 33(12): 1268
20 Zhang J, Li Z, Tang N, et al. Study on corrosion behavior of rare-earth aluminum brass in NaCl+NH4Cl solution [J]. Trans. Mater. Heat Treat., 2009, 30(1): 104
张娟, 李周, 唐宁等. 稀土铝黄铜合金在NaCl+NH4Cl腐蚀液中的腐蚀行为 [J]. 材料热处理学报, 2009, 30(1): 104
21 Huang G S, Liu G Z, Duan D X, et al. Effects of ammonia producing bacteria on corrosion of B30 [J]. Corros. Prot., 2005, 26 (8): 333
黄国胜, 刘光洲, 段东霞等. 产氨菌对B30铜镍合金腐蚀的影响 [J]. 腐蚀与防护, 2005, 26(8): 333
22 Cartere T W, Verley K S. Coordination Chemistry Research Progress [M]. Hauppauge, NY: Nova Science Publishers, 2008
[1] MA Shide, LIU Xin, WANG Zaidong, REN Yadong, TAI Yu, HAN Wen, DUAN Jizhou. Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[2] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[3] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[4] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[6] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[9] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[12] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[13] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[14] Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[15] Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
No Suggested Reading articles found!